В параллелограмме противоположные. "параллелограмм и его свойства"

Конспект урока.

Алгебра 8 класс

Учитель Сысой А.К.

Школа 1828

Тема урока: «Параллелограмм и его свойства»

Тип урока: комбинированный

Цели урока:

1) Обеспечить усвоение нового понятия – параллелограмм и его свойств

2) Продолжить развитие навыков и умений решения геометрических задач;

3) Развитие культуры математической речи

План урока:

1. Организационный момент

(Слайд 1)

На слайде демонстрируется высказывание Льюиса Кэрролла. Ученикам сообщается о цели урока. Проверяется готовность учеников к уроку.

2. Актуализация знаний

(Слайд 2)

На доске задачи для устной работы. Учитель предлагает ученикам подумать над этими задачами и поднять руку тем, кто понял, как задачу решать. После решения двух задач, на доказательство теоремы о сумме углов вызывается к доске ученик, который самостоятельно делает дополнительные построения на чертеже и доказывает устно теорему.

Учениками используется формула суммы углов многоугольника:


3. Основная часть

(Слайд 3)

На доске определение параллелограмма. Учитель говорит о новой фигуре и формулирует определение, делая с помощью чертежа необходимые пояснения. Затем на клетчатой части презентации, с помощью маркера и линейки, показывает, как можно рисовать параллелограмм (возможно несколько случаев)

(Слайд 4)

Учитель формулирует первое свойство параллелограмма. Предлагает ученикам сказать, по рисунку, что дано и что необходимо доказать. После этого на доске появляется дано задачи. Ученики догадываются (может быть при помощи учителя) что искомые равенства надо доказать через равенства треугольников, которые можно получить проведя диагональ (на доске появляется диагональ). Далее ученики догадываются почему треугольники равны и называют признак равенства треугольников (появляется соответствующая форма). Устно сообщают факты, которые необходимы для равенства треугольников (по мере того как они их называют, появляется соответствующая визуализация). Далее ученики формулируют свойство равных треугольников, оно появляется в виде пункта 3 доказательства и затем самостоятельно завершают доказательство теоремы устно.

(Слайд 5)

Учитель формулирует второе свойство параллелограмма. На доске появляется рисунок параллелограмма. Учитель предлагает по рисунку сказать что дано, что необходимо доказать. После того как ученики правильно сообщают о том, что дано и что необходимо доказать, появляется условие теоремы. Ученики догадываются, что равенство частей диагоналей можно доказать через равенство треугольников AOB и COD . С помощью предыдущего свойства параллелограмма догадываются о равенстве сторон AB и CD . Затем понимают, что надо найти равные углы и с помощью свойств параллельных прямых доказывают равенство прилежащих к равным сторонам углов. Данные этапы визуализируются на слайде. Из равенства треугольников следует и истинность теоремы – проговаривают ученики на слайде появляется соответствующая визуализация.

(Слайд 6)

Учитель формулирует третье свойство параллелограмма. В зависимости от времени, которое остаётся до конца урока, учитель может дать возможность ученикам самостоятельно доказать это свойство, или ограничится его формулировкой, а само доказательство оставить ученикам в качестве домашней работы. Доказательство может опираться на сумму углов вписанного многоугольника, которая повторялась в начале урока, или на сумму внутренних односторонних углов при двух параллельных прямых AD и BC , и секущей, например AB .

4. Закрепление материала

На этом этапе учащиеся, используя ранее изученные теоремы, решают задачи. Идеи к решению задачи подбирают ученики самостоятельно. Так как возможных вариантов оформления немало и все они зависят от того каким образом ученики будут искать решение задачи, визуализации решения задач нет, а ученики самостоятельно оформляют каждый этап решения на отдельной доске с записью решения в тетрадь.

(Слайд 7)

Появляется условие задачи. Учитель предлагает по условию сформулировать «Дано». После того, как ученики, верно составят краткую запись условия на доске появляется «Дано». Ход решения задачи может выглядеть следующим образом:

    Проведём высоту BH (визуализировано)

    Треугольник AHB – прямоугольный. Угол A равен углу C и равен 30 0 (по свойству о противоположных углах в параллелограмме). 2BH =AB (по свойству катета, лежащего напротив угла в 30 0 в прямоугольном треугольнике). Значит AB = 13 см.

    AB = CD , BC = AD (по свойству противоположных сторон в параллелограмме) Значит AB =CD =13см. Так как периметр параллелограмма равен 50 см, то BC =AD =(50 – 26):2=12см.

Ответ: AB = CD = 13 см, BC = AD = 12 см.

(Слайд 8)

Появляется условие задачи. Учитель предлагает по условию сформулировать «Дано». После появляется «Дано» на экране. С помощью красных линий выделяется четырёхугольник, про который нужно доказать, что он параллелограмм. Ход решения задачи может выглядеть следующим образом:

    Т.к. BK и MD перпендикуляры к одной прямой, то прямы BK и MD параллельны.

    Через смежные углы можно показать, что сумма внутренних односторонних углов при прямых BM и KD и секущей MD равна 180 0 . Поэтому данные прямые параллельны.

    Так как у четырехугольника BMDK противоположные стороны попарно параллельны, то данный четырехугольник параллелограмм.

5. Окончание урока. Поведение итогов.

(Слайд 8)

На слайде появляются вопросы по новой теме, на которые ученики отвечают.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Параллелограммом называется четырехугольник, у которго противоположные стороны параллельны, т.е. лежат на параллельных прямых

Свойства параллелограмма:
Теорема 22. Противоположные стороны параллелограма равны.
Доказательство. В параллелограмме АВСD проведем диагональ АС. Треугольники АСD и АСВ равны, как имеющие общую сторону АС и две пары равных углов. прилежащих к ней: ∠ САВ=∠ АСD, ∠ АСВ=∠ DAC (как накрест лежащие углы при параллельных прямых AD и ВС). Значит, АВ=CD и ВС=AD, как соответственные стороны равных треугольников, ч.т.д. Из равенства этих треугольников также следует равенство соответственных углов треугольников:
Теорема 23. Противоположные углы параллелограмма равны: ∠ А=∠ С и ∠ В=∠ D.
Равенство первой пары идет из равенства треугольников АВD и CBD, а второй - АВС и ACD.
Теорема 24. Соседние углы параллелограмма, т.е. углы, прилежащие к одной стороне, составляют в сумме 180 градусов.
Это так, потому что они являются внутренними односторонними углами.
Теорема 25. Диагонали параллелограмма делят друг друга в точке их пересечения пополам.
Доказательство. Рассмотрим треугольники ВОС и АОD. По первому свойству AD=ВС ∠ ОАD=∠ ОСВ и ∠ ОDА=∠ ОВС как накрест лежащие при параллельных прямых AD и ВС. Поэтому треугольники ВОС и АОD равны по стороне и прилежащим к ней углам. Значит, ВО=ОD и АО=ОС, как соответственные стороны равных треугольников, ч.т.д.

Признаки параллелограмма
Теорема 26. Если противоположные стороны четырехугольника попарно равны, то он является параллелограммом.
Доказательство. Пусть у четырехугольника АВСD стороны AD и ВС, АВ и CD соответственно равны (рис2). Проведем диагональ АС. Треугольникик АВС и ACD равны по трем сторонам. Тогда углы ВАС и DСА равны и, следовательно, АВ параллельна CD. Параллельность сторон ВС и AD следует из равенства углов CAD и АСВ.
Теорема 27. Если противоположные углы четырехугольника попарно равны, то он является параллелограммом.
Пусть ∠ А=∠ С и ∠ В=∠ D. Т.к. ∠ А+∠ В+∠ С+∠ D=360 о, то ∠ А+∠ В=180 о и стороны AD и ВС параллельны (по признаку параллельности прямых). Также докажем и параллельность сторон АВ и CD и заключим, что АВСD является параллелограммом по определению.
Теорема 28. Если соседние углы четырехугольника, т.е. углы, прилежащие к одной стороне, составляют в сумме 180 градусов, то он является параллелограммом.
Если внутренние односторонные углы в сумме составляют 180 градусов, то прямые праллельны. Значит АВ парал CD и ВС парал AD. Четырехугольник оказывается параллелограммом по определению.
Теорема 29. Если диагонали четырехугольника взаимно делятся в точке пересечения пополам, то четырехугольник - параллелограмм.
Доказательство. Если АО=ОС, ВО=ОD, то треугольники АOD и ВОС равны, как имеющие равны углы (вертикальные) при вершине О, заключенные между парами равных сторон. Из равенства треугольников заключаем, что AD и ВС равны. Также равны стороны АВ и CD, и четырехугольник оказывается параллелограммом по признаку 1.
Теорема 30. Если четырехугольник имеет пару равных, параллельных между собой сторон, то он является параллелограммом.
Пусть в четырехугольнике АВСD стороны АВ и CD параллельны и равны. Проведем диагонали АС и ВD. Из параллельности этих прямых следует равенство накрест лежащих углов АВО=СDО и ВАО=ОСD. Треугольники АВО и CDО равны по стороне и прилежащим к ней углам. Поэтому АО=ОС, ВО=ОD, т.е. диагонали точкой пересечения делятся пополам и четырехугольник оказывается параллелограммом по признаку 4.

В геометрии рассматривают частные случаи параллелограмма.

При решении задач по данной теме кроме основных свойств параллелограмма и соответственных формул можно запомнить и применять следующее:

  1. Биссектриса внутреннего угла параллелограмма отсекает от него равнобедренный треугольник
  2. Биссектрисы внутренних углов прилежащие к одной из сторон параллелограмма взаимно перпендикулярные
  3. Биссектрисы, выходящие из противоположных внутренних углов параллелограмма, параллельные между собой либо лежат на одной прямой
  4. Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон
  5. Площадь параллелограмма равна половине произведения диагоналей на синус угла между ними

Рассмотрим задачи, при решении которых используются данные свойства.

Задача 1.

Биссектриса угла С параллелограмма АВСD пересекает сторону АD в точке М и продолжение стороны АВ за точку А в точке Е. Найдите периметр параллелограмма, если АЕ = 4, DМ = 3.

Решение.

1. Треугольник СМD равнобедренный. (Свойство 1). Следовательно, СD = МD = 3 см.

2. Треугольник ЕАМ равнобедренный.
Следовательно, АЕ = АМ = 4 см.

3. АD = АМ + МD = 7 см.

4. Периметр АВСD = 20 см.

Ответ. 20 см.

Задача 2.

В выпуклом четырёхугольнике АВСD проведены диагонали. Известно, что площади треугольников АВD, АСD, ВСD равны. Докажите, что данный четырёхугольник является параллелограммом.

Решение.

1. Пусть ВЕ – высота треугольника АВD, СF – высота треугольника АCD. Так как по условию задачи площади треугольников равны и у них общее основание АD, то высоты этих треугольников равны. ВЕ = СF.

2. ВЕ, СF перпендикулярны АD. Точки В и С расположены по одну сторону относительно прямой АD. ВЕ = СF. Следовательно, прямая ВС || AD. (*)

3. Пусть АL – высота треугольника АСD, BK – высота треугольника BCD. Так как по условию задачи площади треугольников равны и у них общее основание СD, то высоты этих треугольников равны. АL = BK.

4. АL и BK перпендикулярны СD. Точки В и А расположены по одну сторону относительно прямой СD. АL = BK. Следовательно, прямая АВ || СD (**)

5. Из условий (*), (**) вытекает – АВСD параллелограмм.

Ответ. Доказано. АВСD – параллелограмм.

Задача 3.

На сторонах ВС и СD параллелограмма АВСD отмечены точки М и Н соответственно так, что отрезки ВМ и НD пересекаются в точке О; <ВМD = 95 о,

Решение.

1. В треугольнике DОМ <МОD = 25 о (Он смежный с <ВОD = 155 о); <ОМD = 95 о. Тогда <ОDМ = 60 о.

2. В прямоугольном треугольнике DНС
(

Тогда <НСD = 30 о. СD: НD = 2: 1
(Так как в прямоугольном треугольнике катет, который лежит против угла в 30 о, равен половине гипотенузы).

Но СD = АВ. Тогда АВ: НD = 2: 1.

3. <С = 30 о,

4. <А = <С = 30 о, <В =

Ответ: АВ: НD = 2: 1, <А = <С = 30 о, <В =

Задача 4.

Одна из диагоналей параллелограмма длиною 4√6, составляет с основанием угол 60 о, а вторая диагональ составляет с тем же основанием угол 45 о. Найти вторую диагональ.

Решение.

1. АО = 2√6.

2. К треугольнику АОD применим теорему синусов.

АО/sin D = OD/sin А.

2√6/sin 45 о = OD/sin 60 о.

ОD = (2√6sin 60 о) / sin 45 о = (2√6 · √3/2) / (√2/2) = 2√18/√2 = 6.

Ответ: 12.

Задача 5.

У параллелограмма со сторонами 5√2 и 7√2 меньший угол между диагоналями равен меньшему углу параллелограмма. Найдите сумму длин диагоналей.

Решение.

Пусть d 1 , d 2 – диагонали параллелограмма, а угол между диагоналями и меньший угол параллелограмма равен ф.

1. Посчитаем двумя разными
способами его площадь.

S ABCD = AB · AD · sin A = 5√2 · 7√2 · sin ф,

S ABCD = 1/2 AС · ВD · sin AОВ = 1/2 · d 1 d 2 sin ф.

Получим равенство 5√2 · 7√2 · sin ф = 1/2d 1 d 2 sin ф или

2 · 5√2 · 7√2 = d 1 d 2 ;

2. Используя соотношение между сторонами и диагоналями параллелограмма запишем равенство

(АВ 2 + АD 2) · 2 = АС 2 + ВD 2 .

((5√2) 2 + (7√2) 2) · 2 = d 1 2 + d 2 2 .

d 1 2 + d 2 2 = 296.

3. Составим систему:

{d 1 2 + d 2 2 = 296,
{d 1 + d 2 = 140.

Умножим второе уравнение системы на 2 и сложим с первым.

Получим (d 1 + d 2) 2 = 576. Отсюда Id 1 + d 2 I = 24.

Так как d 1 , d 2 – длины диагоналей параллелограмма, то d 1 + d 2 = 24.

Ответ: 24.

Задача 6.

Стороны параллелограмма 4 и 6. Острый угол между диагоналями равен 45 о. Найдите площадь параллелограмма.

Решение.

1. Из треугольника АОВ, используя теорему косинусов, запишем соотношение между стороной параллелограмма и диагоналями.

АВ 2 = АО 2 + ВО 2 2 · АО · ВО · cos АОВ.

4 2 = (d 1 /2) 2 + (d 2 /2) 2 – 2 · (d 1 /2) · (d 2 /2)cos 45 о;

d 1 2 /4 + d 2 2 /4 – 2 · (d 1 /2) · (d 2 /2)√2/2 = 16.

d 1 2 + d 2 2 – d 1 · d 2 √2 = 64.

2. Аналогично запишем соотношение для треугольника АОD.

Учтем, что <АОD = 135 о и cos 135 о = -cos 45 о = -√2/2.

Получим уравнение d 1 2 + d 2 2 + d 1 · d 2 √2 = 144.

3. Имеем систему
{d 1 2 + d 2 2 – d 1 · d 2 √2 = 64,
{d 1 2 + d 2 2 + d 1 · d 2 √2 = 144.

Вычитая из второго уравнения первое, получим 2d 1 · d 2 √2 = 80 или

d 1 · d 2 = 80/(2√2) = 20√2

4. S ABCD = 1/2 AС · ВD · sin AОВ = 1/2 · d 1 d 2 sin α = 1/2 · 20√2 · √2/2 = 10.

Примечание: В этой и в предыдущей задаче нет надобности, решать полностью систему, предвидя то, что в данной задаче для вычисления площади нам нужно произведение диагоналей.

Ответ: 10.

Задача 7.

Площадь параллелограмма равна 96, а его стороны равны 8 и 15. Найдите квадрат меньшей диагонали.

Решение.

1. S ABCD = AВ · АD · sin ВAD. Сделаем подстановку в формулу.

Получим 96 = 8 · 15 · sin ВAD. Отсюда sin ВAD = 4 / 5 .

2. Найдём cos ВАD. sin 2 ВAD + cos 2 ВАD = 1.

(4 / 5) 2 + cos 2 ВАD = 1. cos 2 ВАD = 9 / 25 .

По условию задачи мы находим длину меньшей диагонали. Диагональ ВD будет меньшей, если угол ВАD острый. Тогда cos ВАD = 3 / 5.

3. Из треугольника АВD по теореме косинусов найдём квадрат диагонали ВD.

ВD 2 = АВ 2 + АD 2 – 2 · АВ · ВD · cos ВАD.

ВD 2 = 8 2 + 15 2 – 2 · 8 · 15 · 3 / 5 = 145.

Ответ: 145.

Остались вопросы? Не знаете, как решить геометрическую задачу?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Параллелограммом называется четырехугольник, противоположные стороны которого попарно параллельны (рис. 233).

Для произвольного параллелограмма имеют место следующие свойства:

1. Противоположные стороны параллелограмма равны.

Доказательство. В параллелограмме ABCD проведем диагональ АС. Треугольники ACD и АС В равны, как имеющие общую сторону АС и две пары равных углов, прилежащих к ней:

(как накрест лежащие углы при параллельных прямых AD и ВС). Значит, и как стороны равных треугольников, лежащие против равных углов, что и требовалось доказать.

2. Противоположные углы параллелограмма равны:

3. Соседние углы параллелограмма, т. е. углы, прилежащие к одной стороне, составляют в сумме и т. д.

Доказательство свойств 2 и 3 сразу получается из свойств углов при параллельных прямых.

4. Диагонали параллелограмма делят друг друга в точке их пересечения пополам. Иначе говоря,

Доказательство. Треугольники AOD и ВОС равны, так как равны их стороны AD и ВС (свойство 1) и углы, к ним прилежащие (как накрест лежащие углы при параллельных прямых). Отсюда следует и равенство соответствующих сторон этих треугольников: АО что и требовалось доказать.

Каждое из названных четырех свойств характеризует параллелограмм, или, как говорят, является его характеристическим свойством, т. е. всякий четырехугольник, обладающий хотя бы одним из этих свойств, является параллелограммом (и, значит, обладает и всеми остальными тремя свойствами).

Проведем доказательство для каждого свойства отдельно.

1". Если противоположные стороны четырехугольника попарно равны, то он является параллелограммом.

Доказательство. Пусть у четырехугольника ABCD стороны AD и ВС, АВ и CD соответственно равны (рис. 233). Проведем диагональ АС. Треугольники ABC и CDА будут равны, как имеющие три пары равных сторон.

Но тогда углы ВАС и DCА равны и . Параллельность сторон ВС и AD следует из равенства углов CAD и АСВ.

2. Если у четырехугольника две пары противоположных углов равны, то он является параллелограммом.

Доказательство. Пусть . Так как то и стороны AD и ВС параллельны (по признаку параллельности прямых).

3. Предоставляем формулировку и доказательство читателю.

4. Если диагонали четырехугольника взаимно делятся в точке пересечения пополам, то четырехугольник - параллелограмм.

Доказательство. Если АО = ОС, BO = OD (рис. 233), то треугольники AOD и ВОС равны, как имеющие равные углы (вертикальные!) при вершине О, заключенные между парами равных сторон АО и СО, ВО и DO. Из равенства треугольников заключаем, что стороны AD и ВС равны. Также равны стороны АВ и CD, и четырехугольник оказывается параллелограммом по характеристическому свойству Г.

Таким образом, для того чтобы доказать, что данный четырехугольник является параллелограммом, достаточно убедиться в справедливости любого из четырех свойств. Читателю предлагается самостоятельно доказать еще одно характеристическое свойство параллелограмма.

5. Если четырехугольник имеет пару равных, параллельных между собой сторон, то он является параллелограммом.

Иногда какая-нибудь пара параллельных сторон параллелограмма называется его основаниями, тогда две другие называются боковыми сторонами. Отрезок прямой, перпендикулярной к двум сторонам параллелограмма, заключенный между ними, называется высотой параллелограмма. Параллелограмм на рис. 234 имеет высоту h, проведенную к сторонам AD и ВС, вторая его высота представлена отрезком .