Генетические термины и символика. Точка, линия, прямая, луч, отрезок, ломанная Как обозначаются скрещивающиеся прямые значок

Наследственность - способность организмов передавать следующему поколению свои признаки и свойства, т. е. способность воспроизводить себе подобных.

Ген - участок молекулы ДНК, несущий информацию о структуре одного белка.

Генотип - совокупность всех наследственных свойств особи, наследственная основа организма, составленная совокупностью генов.

Фенотип - совокупность всех внутренних и внешних признаков и свойств особи, сформировавшихся на базе генотипа в процессе его индивидуального развития.

Моногибридное скрещивание - скрещивание родительских форм, наследственно различающихся лишь по одной паре признаков.

Доминирование - явление преобладания признаков при скрещивании.

Доминантный признак - преобладающий.

Рецессивный признак — отступающий или исчезающий.

Гомозиготы - особи, дающие при самоопылении по данной паре признаков однородное не расщепляющееся потомство.

Гетерозиготы - особи, дающие расщепление по данной паре признаков.

Аллели - различные формы одного и того же гена.

Дигибридное скрещивание - скрещивание родительских форм, различающихся по двум парам признаков.

Изменчивость - способность организмов изменять свои признаки й свойства.

Модификационная (фенотипическая) изменчивость - изменения фенотипа, возникающие под влиянием изменений внешних условий и не связанные с изменением генотипа.

Норма реакции - пределы модификационной изменчивости данного признака.

Мутации - изменения генотипа, вызванные структурными изменениями генов или хромосом.

Полиплоидия - кратное гаплоидному набору увеличение хромосом в клетке (3n, 4n и более).

В генетике пользуются такими общепринятыми символами:

  • буквой Р (от лат. «парента» - родители) обозначают родительские организмы, взятые для скрещивания;
  • знаком ♀ («зеркало Венеры») — обозначают женский пол;
  • ♂ («щит и копье Марса») - обозначают мужской иол.
  • Скрещивание обозначают знаком «X» , гибридное потомство обозначают буквой F (от лат. «филия» - дети) с цифрой, отвечающей порядковому номеру поколения - F 1 , F 2 , F 3 .

Сформулированные Г. Менделем законы

Правило доминирования , или первый закон: при моногибридном скрещивании у гибридов первого поколения проявляются только доминантные признаки — оно фенотипически единообразно.

Закон расщепления , или второй закон Г. Менделя: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в отношении 3:1 - образуются две фенотипические группы - доминантная и рецессивная.

Закон независимого наследования (третий закон): при дигибридном скрещивании у гибридов каждая пара признаков наследуется независимо от других и дает с ним разные сочетания. Образуются четыре фенотипические группы, характеризующиеся отношением 9:3:3:1.

Ход моногибридного скрещивания (первый и второй законы Менделя)

Светлые кружки - организмы с доминантными признаками; темные - с рецессивным признаком.

Гипотеза чистоты гамет : находящиеся в каждом организме пары альтернативных признаков не смешиваются и при образовании гамет по одному от каждой пары переходят в них в чистом виде.

Для объяснения наблюдаемых закономерностей Мендель выдвинул гипотезу чистоты гамет, предположив следующее:

  • любой признак формируется под влиянием материального фактора (гена).
  • Фактор, определяющий доминантный признак, он определил заглавной буквой А, а рецессивный - а. Каждая особь содержит два фактора, определяющих развитие признака, один она получает от матери, другой - от отца.
  • При образовании гамет у животных и спор - у растений происходит редукция факторов и в каждую гамету или спору попадает только один.

Согласно этой гипотезе ход моногибридного скрещивания записывают так:

При любых сочетаниях гамет все гибриды имеют одинаковый генотип и фенотип.

В F 2 расщепление по генотипу будет 1АА; 2Аа; 1аа, а но фенотипу: 3 желтых, 1 зеленый (3:1).

Иногда у гибридов F 1 , не наблюдается полного доминирования, их признаки носят промежуточный характер. Такой характер наследования называют промежуточным, или неполным доминированием.

Пример: моногибридное скрещивание ночной красавицы: при неполном доминировании в F2 расщепление по фенотипу и генотипу выражается одинаковым соотношением: 1:2:1 (1 белый, 2 розовых, 1 красный).

Характер наследования был определен как независимое и сформулирован третий закон Менделя, или закон независимого наследования.

Независимое наследование имеет огромное значение для эволюции, так как является источником комбинативной изменчивости и многообразия живых организмов.

Закон сцепленного наследования

В 1911 году Томасом Морганом был сформулирован закон сцепленного наследования - сцепленные гены, локализованные в одной хромосоме, наследуются вместе и не обнаруживают независимого расщепления.

В каждой хромосоме сосредоточено несколько тысяч генов, по которым одна особь данного вида отличается от другой. Выясняя вопрос, как будут наследоваться признаки этих генов, Морган установил, что гены, расположенные в одной хромосоме, наследуются сцеплено, вместе, как одна альтернативная пара, не обнаруживая независимого наследования.

Сцепление не всегда бывает абсолютным. В профазе первого деления мейоза при конъюгации хромосом происходит их перекрест, вследствие чего гены, находящиеся в одной хромосоме, оказывались в разных гомологических хромосомах и попадали в разные гаметы.

Схема перекреста хромосом

Два гена, расположенные в одной хромосоме (светлые круги в одной из хромосом), в результате перекреста оказываются в разных гомологичных хромосомах.

Такой обмен приводит к перегруппировке сцепленных генов и является одним из источников комбинативной изменчивости.

Перекрест хромосом играет определенную роль в эволюции, так как новое сочетание генов вызывает появление новых признаков, которые могут оказаться полезными или вредными для организма и повлиять на их выживаемость.

Ген может одновременно влиять на формирование нескольких признаков, проявляя при этом множественное действие.

Для обозначения геометрических фигур и их проекций, для отображения отношения между ними, а также для краткости записей геометрических предложений, алгоритмов решения задач и доказательства теорем в курсе используется геометрический язык , составленный из обозначений и символов, принятых в курсе математики (в частности, в новом курсе геометрии в средней школе).

Все многообразие обозначений и символов, а также связи между ними могут быть подразделены на две группы:

группа I - обозначения геометрических фигур и отношений между ними;

группа II обозначения логических операций, составляющие синтаксическую основу геометрического языка.

Ниже приводится полный список математических символов, используемых в данном курсе. Особое внимание уделяется символам, которые применяются для обозначения проекций геометрических фигур.

Группа I

СИМВОЛЫ, ОБОЗНАЧАЮЩИЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ И ОТНОШЕНИЯ МЕЖДУ НИМИ

А. Обозначение геометрических фигур

1. Геометрическая фигура обозначается - Ф.

2. Точки обозначаются прописными буквами латинского алфавита или арабскими цифрами:

А, В, С, D, ... , L, М, N, ...

1,2,3,4,...,12,13,14,...

3. Линии, произвольно расположенные по отношению к плоскостям проекций, обозначаются строчными буквами латинского алфавита:

а, b, с, d, ... , l, m, n, ...

Линии уровня обозначаются: h - горизонталь; f- фронталь.

Для прямых используются также следующие обозначения:

(АВ) - прямая, проходящая через точки А а В;

[АВ) - луч с началом в точке А;

[АВ] - отрезок прямой, ограниченный точками А и В.

4. Поверхности обозначаются строчными буквами греческого алфавита:

α, β, γ, δ,...,ζ,η,ν,...

Чтобы подчеркнуть способ задания поверхности, следует указывать геометрические элементы, которыми она определяется, например:

α(а || b) - плоскость α определяется параллельными прямыми а и b;

β(d 1 d 2 gα) - поверхность β определяется направляющими d 1 и d 2 , образующей g и плоскостью параллелизма α.

5. Углы обозначаются:

∠ABC - угол с вершиной в точке В, а также ∠α°, ∠β°, ... , ∠φ°, ...

6. Угловая: величина (градусная мера) обозначается знаком , который ставится над углом:

Величина угла АВС;

Величина угла φ.

Прямой угол отмечается квадратом с точкой внутри

7. Расстояния между геометрическими фигурами обозначаются двумя вертикальными отрезками - ||.

Например:

|АВ| - расстояние между точками А и В (длина отрезка АВ);

|Аа| - расстояние от точки А до линии a;

|Аα| - расстояшие от точки А до поверхности α;

|аb| - расстояние между линиями а и b;

|αβ| расстояние между поверхностями α и β.

8. Для плоскостей проекций приняты обозначения: π 1 и π 2 , где π 1 - горизонтальная плоскость проекций;

π 2 -фрюнтальная плоскость проекций.

При замене плоскостей проекций или введении новых плоскостей последние обозначают π 3 , π 4 и т. д.

9. Оси проекций обозначаются: х, у, z, где х - ось абсцисс; у - ось ординат; z - ось аппликат.

Постояшную прямую эпюра Монжа обозначают k.

10. Проекции точек, линий, поверхностей, любой геометрической фигуры обозначаются теми же буквами (или цифрами), что и оригинал, с добавлением верхнего индекса, соответствующего плоскости проекции, на которой они получены:

А", В", С", D", ... , L", М", N", горизонтальные проекции точек; А", В", С", D", ... , L", М", N", ... фронтальные проекции точек; a" , b" , c" , d" , ... , l", m" , n" , - горизонтальные проекции линий; а" ,b" , с" , d" , ... , l" , m" , n" , ... фронтальные проекции линий; α", β", γ", δ",...,ζ",η",ν",... горизонтальные проекции поверхностей; α", β", γ", δ",...,ζ",η",ν",... фронтальные проекции поверхностей.

11. Следы плоскостей (поверхностей) обозначаются теми же буквами, что и горизонталь или фронталь, с добавлением подстрочного индекса 0α , подчеркивающего, что эти линии лежат в плоскости проекции и принадлежат плоскости (поверхности) α.

Так: h 0α - горизонтальный след плоскости (поверхности) α;

f 0α - фронтальный след плоскости (поверхности) α.

12. Следы прямых (линий) обозначаются заглавными буквами, с которых начинаются слова, определяющие название (в латинской транскрипции) плоскости проекции, которую пересекает линия, с подстрочным индексом, указывающим принадлежность к линии.

Например: H a - горизонтальный след прямой (линии) а;

F a - фронтальный след прямой (линии) a.

13. Последовательность точек, линий (любой фигуры) отмечается подстрочными индексами 1,2,3,..., n:

А 1 , А 2 , А 3 ,...,А n ;

a 1 , a 2 , a 3 ,...,a n ;

α 1 , α 2 , α 3 ,...,α n ;

Ф 1 , Ф 2 , Ф 3 ,...,Ф n и т. д.

Вспомогательная проекция точки, полученная в результате преобразования для получения действительной величины геометрической фигуры, обозначается той же буквой с подстрочным индексом 0:

A 0 , B 0 , С 0 , D 0 , ...

Аксонометрические проекции

14. Аксонометрические проекции точек, линий, поверхностей обозначаются теми же буквами, что и натура с добавлением верхнего индекса 0:

А 0 , В 0 , С 0 , D 0 , ...

1 0 , 2 0 , 3 0 , 4 0 , ...

a 0 , b 0 , c 0 , d 0 , ...

α 0 , β 0 , γ 0 , δ 0 , ...

15. Вторичные проекции обозначаются путем добавления верхнего индекса 1:

А 1 0 , В 1 0 , С 1 0 , D 1 0 , ...

1 1 0 , 2 1 0 , 3 1 0 , 4 1 0 , ...

a 1 0 , b 1 0 , c 1 0 , d 1 0 , ...

α 1 0 , β 1 0 , γ 1 0 , δ 1 0 , ...

Для облегчения чтения чертежей в учебнике при оформлении иллюстративного материала использованы несколько цветов, каждый из которых имеет определенное смысловое значение: линиями (точками) черного цвета обозначены исходные данные; зеленый цвет использован для линий вспомогательных графических построений; красными линиями (точками) показаны результаты построений или те геометрические элементы, на которые следует обратить особое внимание.

Б. Символы, обозначающие отношения между геометрическими фигурами
№ по пор. Обозначение Содержание Пример символической записи
1 Совпадают (АВ)≡(CD) - прямая, проходящая через точки А и В,
совпадает с прямой, проходящей через точки С и D
2 Конгруентны ∠ABC≅∠MNK - угол АВС конгруентен углу MNK
3 Подобны ΔАВС∼ΔMNK - треугольники АВС и MNK подобны
4 || Параллельны α||β - плоскость α параллельна плоскости β
5 Перпендикулярны а⊥b - прямые а и b перпендикулярны
6 Скрещиваются с d - прямые с и d скрещиваются
7 Касательные t l - прямая t является касательной к линии l.
βα - плоскость β касательная к поверхности α
8 Отображаются Ф 1 →Ф 2 - фигура Ф 1 отображается на фигуру Ф 2
9 S Центр проецирования.
Если центр проецирования несобственная точка,
то его положение обозначается стрелкой,
указывающей направление проецирования
-
10 s Направление проецирования -
11 P Параллельное проецирование р s α Параллельное проецирование - параллельное проецирование
на плоскость α в направлении s

В. Обозначения теоретико-множественные
№ по пор. Обозначение Содержание Пример символической записи Пример символической записи в геометрии
1 M,N Множества - -
2 A,B,C,... Элементы множества - -
3 { ... } Состоит из... Ф{A, B, C,... } Ф{A, B, C,... } - фигура Ф состоит из точек А, В,С, ...
4 Пустое множество L - ∅ - множество L пустое (не содержит элементов) -
5 Принадлежит, является элементом 2∈N (где N - множество натуральных чисел) -
число 2 принадлежит множеству N
А ∈ а - точка А принадлежит прямой а
(точка А лежит на прямой а)
6 Включает, cодержит N⊂М - множество N является частью (подмножеством) множества
М всех рациональных чисел
а⊂α - прямая а принадлежит плоскости α (понимается в смысле:
множество точек прямой а является подмножеством точек плоскости α)
7 Объединение С = A U В - множество С есть объединение множеств
A и В; {1, 2. 3, 4,5} = {1,2,3}∪{4,5}
ABCD = ∪ [ВС] ∪ - ломаная линия, ABCD есть
объединение отрезков [АВ], [ВС],
8 Пересечение множеств М=К∩L - множество М есть пересечение множеств К и L
(содержит в себе элементы, принадлежащие как множеству К, так и множеству L).
М ∩ N = ∅- пересечение множеств М и N есть пустое множество
(множества М и N не имеют общих элементов)
а = α ∩ β - прямая а есть пересечение
плоскостей α и β
а ∩ b = ∅ - прямые а и b не пересекаются
(не имеют общих точек)

Группа II СИМВОЛЫ, ОБОЗНАЧАЮЩИЕ ЛОГИЧЕСКИЕ ОПЕРАЦИИ
№ по пор. Обозначение Содержание Пример символической записи
1 Конъюнкция предложений; соответствует союзу "и".
Предложение (р∧q) истинно тогда и только тогда,когда р и q оба истинны
α∩β = { К:K∈α∧K∈β} Пересечение поверхностей α и β есть множество точек (линия),
состоящее из всех тех и только тех точек К, которые принадлежат как поверхности α, так и поверхности β
2 Дизъюнкция предложений; соответствует союзу "или". Предложение (p∨q)
истинно, когда истинно хотя бы одно из предложений р или q (т. е. или р, или q, или оба).
-
3 Импликация - логическое следствие. Предложение р⇒q означает: "если р, то и q" (а||с∧b||с)⇒a||b. Если две прямые параллельны третьей, то они параллельны между собой
4 Предложение (р⇔q) понимается в смысле: "если р, то и q; если q, то и р" А∈α⇔А∈l⊂α.
Точка принадлежит плоскости, если она принадлежит некоторой линии, принадлежащей этой плоскости.
Справедливо также и обратное утверждение: если точка принадлежит некоторой линии,
принадлежащей плоскости, то она принадлежит и самой плоскости
5 Квантор общности, читается: для всякого, для всех, для любого.
Выражение ∀(x)P(x) означает: "для всякого x: имеет место свойство Р(х) "
∀(ΔАВС)( = 180°) Для всякого (для любого) треугольника сумма величин его углов
при вершинах равна 180°
6 Квантор существования, читается: существует.
Выражение ∃(х)P(х) означает: "существует х, обладающее свойством Р(х)"
(∀α)(∃a).Для любой плоскости α существует прямая а, не принадлежащая плоскости α
и параллельная плоскости α
7 ∃1 Квантор единственности существования, читается: существует единственное
(-я, -й)... Выражение ∃1(x)(Рх) означает: "существует единственное (только одно) х,
обладающее свойством Рх"
(∀ А, В)(А≠B)(∃1а)(а∋А, В) Для любых двух различных точек А и В существует единственная прямая a,
проходящая через эти точки.
8 (Px) Отрицание высказывания P(x) аb(∃α )(α⊃а, Ь).Если прямые а и b скрещиваются, то не существует плоскости а, которая содержит их
9 \ Отрицание знака
≠ -отрезок [АВ] не равен отрезку .а?b - линия а не параллельна линии b

Точка — это абстрактный объект, который не имеет измерительных характеристик: ни высоты, ни длины, ни радиуса. В рамках задачи важно только его местоположение

Точка обозначается цифрой или заглавной (большой) латинской буквой. Несколько точек — разными цифрами или разными буквами, чтобы их можно было различать

точка A, точка B, точка C

A B C

точка 1, точка 2, точка 3

1 2 3

Можно нарисовать на листке бумаги три точки "А" и предложить ребёнку провести линию через две точки "А". Но как понять через какие? A A A

Линия — это множество точек. У неё измеряют только длину. Ширины и толщины она не имеет

Обозначается строчными (маленькими) латинскими буквами

линия a, линия b, линия c

a b c

Линия может быть

  1. замкнутой, если её начало и конец находятся в одной точке,
  2. разомкнутой, если её начало и конец не соединены

замкнутые линии

разомкнутые линии

Ты вышел из квартиры, купил в магазине хлеб и вернулся обратно в квартиру. Какая линия получилась? Правильно, замкнутая. Ты вернулся в исходную точку. Ты вышел из квартиры, купил в магазине хлеб, зашёл в подъезд и разговорился с соседом. Какая линия получилась? Разомкнутая. Ты не вернулся в исходную точку. Ты вышел из квартиры, купил в магазине хлеб. Какая линия получилась? Разомкнутая. Ты не вернулся в исходную точку.
  1. самопересекающейся
  2. без самопересечений

самопересекающиеся линии

линии без самопересечений

  1. прямой
  2. ломанной
  3. кривой

прямые линии

ломанные линии

кривые линии

Прямая линия — это линия которая не искривляется, не имеет ни начала, ни конца, её можно бесконечно продолжать в обе стороны

Даже когда виден небольшой участок прямой, предполагается, что она бесконечно продолжается в обе стороны

Обозначается строчной (маленькой) латинской буквой. Или двумя заглавными (большими) латинскими буквами — точками, лежащими на прямой

прямая линия a

a

прямая линия AB

B A

Прямые могут быть

  1. пересекающимися, если имеют общую точку. Две прямые могут пересекаться только в одной точке.
    • перпендикулярными, если пересекаются под прямым углом (90°).
  2. параллельными, если не пересекаются, не имеют общей точки.

параллельные линии

пересекающиеся линии

перпендикулярные линии

Луч — это часть прямой, которая имеет начало, но не имеет конца, её можно бесконечно продолжать только в одну сторону

У луча света на картинке начальной точкой является солнце

солнышко

Точка разделяет прямую на две части — два луча A A

Луч обозначается строчной (маленькой) латинской буквой. Или двумя заглавными (большими) латинскими буквами, где первая — это точка, с которой начинается луч, а вторая — точка, лежащая на луче

луч a

a

луч AB

B A

Лучи совпадают, если

  1. расположены на одной и той же прямой,
  2. начинаются в одной точке,
  3. направлены в одну сторону

лучи AB и AC совпадают

лучи CB и CA совпадают

C B A

Отрезок — это часть прямой, которая ограничена двумя точками, то есть она имеет и начало и конец, а значит можно измерить её длину. Длина отрезка — это расстояние между его начальной и конечной точками

Через одну точку можно провести любое число линий, в том числе прямых

Через две точки — неограниченное количество кривых, но только одну прямую

кривые линии, проходящие через две точки

B A

прямая линия AB

B A

От прямой «отрезали» кусочек и остался отрезок. Из примера выше видно, что его длина — наикратчайшее расстояние между двумя точками. ✂ B A ✂

Отрезок обозначается двумя заглавными(большими) латинскими буквами, где первая — это точка, с которой начинается отрезок, а вторая — точка, которой заканчивается отрезок

отрезок AB

B A

Задача: где прямая , луч , отрезок , кривая ?

Ломанная линия — это линия, состоящая из последовательно соединённых отрезков не под углом 180°

Длинный отрезок «поломали» на несколько коротких

Звенья ломаной (похожи на звенья цепи) — это отрезки, из которых состоит ломанная. Смежные звенья — это звенья, у которых конец одного звена является началом другого. Смежные звенья не должны лежать на одной прямой.

Вершины ломаной (похожи на вершины гор) — это точка, с которой начинается ломанная, точки, в которых соединяются отрезки, образующие ломаную, точка, которой заканчивается ломанная.

Обозначается ломанная перечислением всех её вершин.

ломанная линия ABCDE

вершина ломанной A, вершина ломанной B, вершина ломанной C, вершина ломанной D, вершина ломанной E

звено ломанной AB, звено ломанной BC, звено ломанной CD, звено ломанной DE

звено AB и звено BC являются смежными

звено BC и звено CD являются смежными

звено CD и звено DE являются смежными

A B C D E 64 62 127 52

Длина ломанной — это сумма длин её звеньев: ABCDE = AB + BC + CD + DE = 64 + 62 + 127 + 52 = 305

Задача: какая ломанная длиннее , а у какой больше вершин ? У первой линии все звенья одинаковой длины, а именно по 13см. У второй линии все звенья одинаковой длины, а именно по 49см. У третьей линии все звенья одинаковой длины, а именно по 41см.

Многоугольник — это замкнутая ломанная линия

Стороны многоугольника (помогут запомнить выражения: "пойти на все четыре стороны", "бежать в сторону дома", "с какой стороны стола сядешь?") — это звенья ломанной. Смежные стороны многоугольника — это смежные звенья ломанной.

Вершины многоугольника — это вершины ломанной. Соседние вершины — это точки концов одной стороны многоугольника.

Обозначается многоугольник перечислением всех его вершин.

замкнутая ломанная линия, не имеющая самопересечения, ABCDEF

многоугольник ABCDEF

вершина многоугольника A, вершина многоугольника B, вершина многоугольника C, вершина многоугольника D, вершина многоугольника E, вершина многоугольника F

вершина A и вершина B являются соседними

вершина B и вершина C являются соседними

вершина C и вершина D являются соседними

вершина D и вершина E являются соседними

вершина E и вершина F являются соседними

вершина F и вершина A являются соседними

сторона многоугольника AB, сторона многоугольника BC, сторона многоугольника CD, сторона многоугольника DE, сторона многоугольника EF

сторона AB и сторона BC являются смежными

сторона BC и сторона CD являются смежными

сторона CD и сторона DE являются смежными

сторона DE и сторона EF являются смежными

сторона EF и сторона FA являются смежными

A B C D E F 120 60 58 122 98 141

Периметр многоугольника — это длина ломанной: P = AB + BC + CD + DE + EF + FA = 120 + 60 + 58 + 122 + 98 + 141 = 599

Многоугольник с тремя вершинами называется треугольником, с четырьмя — четырёхугольником, с пятью — пятиугольником и т.д.

Генетическая символика

Символика — перечень и объяснение условных названий и терминов, употребляемых в какой-либо отрасли науки.

Основы генетической символики были заложены Грегором Менделем, применившим буквенную символику для обозначения признаков. Доминантные признаки были обозначены заглавными буквами латинского алфавита А, В, С и т.д., рецессивные — малыми буквами — а, в, с и т.д. Буквенная символика, предложенная Менделем, по сути, алгебраическая форма выражения законов наследования признаков.

Для обозначения скрещивания принята следующая символика.

Родители обозначаются латинской буквой Р (Parents — родители), затем рядом записывают их генотипы. Женский пол обозначают сим волом ♂ (зеркало Венеры), мужской — ♀ (щит и копье Марса). Между родителями ставят знак «х», обозначающий скрещивание. Генотип женской особи пишут на первом месте, а мужской - на втором.

Первое по коление обозначается F 1 (Filli — дети), второе поколение — F 2 и т.д. Рядом приводят обозначения генотипов потомков.

Словарь основных терминов и понятий

Аллели (аллельные гены) — разные формы одного гена, возникшие в результате мутаций и расположенные в одинаковых точках (локусах) парных гомологичных хромосом.

Альтернативные признаки – взаимоисключающие, контрастные признаки.

Гаметы (от греч. « гаметес » – супруг) – половая клетка растительного или животного организма, несущая один ген из аллельной пары. Гаметы всегда несут гены в «чистом» виде, т.к. образуются путем мейотического деления клеток и содержат одну из пары гомологичных хромосом.

Ген (от греч. « генос » – рождение) – участок молекулы ДНК, несущий информацию о первичной структуре одного конкретного белка.

Гены аллельные – парные гены, расположенные в идентичных участках гомологичных хромосом.

Генотип — совокупность наследственных задатков (генов) организма.

Гетерозигота (от греч. « гетерос » – другой и зигота) – зигота, имеющая два разных аллеля по данному гену (Аа, Вb ).

Гетерозиготными называют особей, получивших от родительских особей разные гены. Гетерозиготная особь в потомстве дает расщепление по данному признаку.

Гомозигота (от греч. « гомос » – одинаковый и зигота) – зигота, имеющая одинаковые аллели данного гена (оба доминантные или оба рецессивные).

Гомозиготными называют особей, получивших от родительских особей одинаковые наследственные задатки (гены) по какому-то конкретному признаку. Гомозиготная особь в потомстве не дает расщепления.

Гомологичные хромосомы (от греч. « гомос » – одинаковый) – парные хромосомы, одинаковые по форме, размерам, набору генов. В диплоидной клетке набор хромосом всегда парный: одна хромосома из пары материнского происхождения, вторая – отцовская.

Гетерозиготными называют особей, получивших от родительских особей разные гены. Таким образом, по генотипу особи могут быть гомозиготными (АА или аа) или гетерозиготными (Аа).

Доминантный признак (ген ) – преобладающий, проявляющийся – обозначается заглавными буквами латинского алфавита: А, В, С и т. д.

Рецессивный признак (ген) – подавляемый признак – обозначается соответствующей строчной буквой латинского алфавита: а, b с и т. д

Скрещивание анализирующее – скрещивание испытуемого организма с другим, являющимся по данному признаку рецессивной гомозиготой, что позволяет установить генотип испытуемого.

Скрещивание дигибридное – скрещивание форм, отличающихся друг от друга по двум парам альтернативных признаков.

Скрещивание моногибридное – скрещивание форм, отличающихся друг от друга по одной паре альтернативных признаков.

Чистые линии – организмы, гомозиготные по одному или нескольким признакам и не дающие в потомстве проявления альтернативного признака.

Фен – признак.

Фенотип — совокупность всех внешних признаков и свойств организма, до ступных наблюдению и анализу.

Алгоритм решения генетических задач

  1. Внимательно прочтите уровень задачи.
  2. Сделайте краткую запись условия задачи.
  3. Запишите генотипы и фенотипы скрещиваемых особей.
  4. Определите и запишите типы гамет, которые образуют скрещиваемые особи.
  5. Определите и запишите генотипы и фенотипы полученного от скрещивания потомства.
  6. Проанализируйте результаты скрещивания. Для этого определите количество классов потомства по фенотипу и генотипу и запишите их в виде числового соотношения.
  7. Запишите ответ на вопрос задачи.

(При решении задач по определённым темам последовательность этапов может изменяться, а их содержание модифицироваться.)

Оформление задач

  1. Первым принято записывать генотип женской особи, а затем – мужской (верная запись - ♀ААВВ х ♂аавв; неверная запись - ♂ аавв х ♀ААВВ).
  2. Гены одной аллельной пары всегда пишутся рядом (верная запись – ♀ААВВ; неверная запись ♀АВАВ).
  3. При записи генотипа, буквы, обозначающие признаки, всегда пишутся в алфавитном порядке, независимо, от того, какой признак – доминантный или рецессивный – они обозначают (верная запись - ♀ааВВ; неверная запись -♀ ВВаа).
  4. Если известен только фенотип особи, то при записи её генотипа пишут лишь те гены, наличие которых бесспорно. Ген, который невозможно определить по фенотипу, обозначают значком «_» (например, если жёлтая окраска (А) и гладкая форма (В) семян гороха – доминантные признаки, а зелёная окраска (а) и морщинистая форма (в) – рецессивные, то генотип особи с жёлтыми морщинистыми семенами записывают следующим образом: А_вв ).
  5. Под генотипом всегда пишут фенотип.
  6. Гаметы записывают, обводя их кружком (А).
  7. У особей определяют и записывают типы гамет, а не их количество