Оксид меди (II), свойства, получение, химические реакции. Медь и ее соединения Оксид меди 2 при нагревании взаимодействует с

Медь (Cu) относится к d-элементам и расположена в IB группе периодической таблицы Д.И.Менделеева. Электронная конфигурация атома меди в основном состоянии записывается виде 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 вместо предполагаемой формулы 1s 2 2s 2 2p 6 3s 2 3p 6 3d 9 4s 2 . Другими словами, в случае атома меди наблюдается так называемый «проскок электрона» с 4s-подуровня на 3d-подуровень. Для меди, кроме нуля, возможны степени окисления +1 и +2. Степень окисления +1 склонна к диспропорционированию и стабильна лишь в нерастворимых соединениях типа CuI, CuCl, Cu 2 O и т. д., а также в комплексных соединениях, например, Cl и OH. Соединения меди в степени окисления +1 не имеют конкретной окраски. Так, оксид меди (I) в зависимости от размеров кристаллов может быть темно-красный (крупные кристаллы) и желтый (мелкие кристаллы), CuCl и CuI — белыe, а Cu 2 S — черно-синий. Более химически устойчивой является степень окисления меди, равная +2. Соли, содержащие медь в данной степени окисления, имеют синюю и сине-зеленую окраску.

Медь является очень мягким, ковким и пластичным металлом с высокой электро- и теплопроводностью. Окраска металлической меди красно-розовая. Медь находится в ряду активности металлов правее водорода, т.е. относится к малоактивным металлам.

с кислородом

В обычных условиях медь с кислородом не взаимодействует. Для протекания реакции между ними требуется нагрев. В зависимости от избытка или недостатка кислорода и температурных условий может образовать оксид меди (II) и оксид меди (I):

с серой

Реакция серы с медью в зависимости от условий проведения может приводить к образованию как сульфида меди (I), так и сульфида меди (II). При нагревании смеси порошкообразных Cu и S до температуры 300-400 о С образуется сульфид меди (I):

При недостатке серы и проведении реакции при температуре более 400 о С образуется сульфид меди (II). Однако, более простым способом получения сульфида меди (II) из простых веществ является взаимодействие меди с серой, растворенной в сероуглероде:

Данная реакция протекает при комнатной температуре.

с галогенами

С фтором, хлором и бромом медь реагирует, образуя галогениды с общей формулой CuHal 2 , где Hal – F, Cl или Br:

Cu + Br 2 = CuBr 2

В случае с йодом — самым слабым окислителем среди галогенов — образуется иодид меди (I):

С водородом, азотом, углеродом и кремнием медь не взаимодействует.

с кислотами-неокислителями

Кислотами-неокислителями являются практически все кислоты, кроме концентрированной серной кислоты и азотной кислоты любой концентрации. Поскольку кислоты-неокислители в состоянии окислить только металлы, находящиеся в ряду активности до водорода; это означает, что медь с такими кислотами не реагирует.

с кислотами-окислителями

— концентрированной серной кислотой

С концентрированной серной кислотой медь реагирует как при нагревании, так и при комнатной температуре. При нагревании реакция протекает в соответствии с уравнением:

Поскольку медь не является сильным восстановителем, сера восстанавливается в данной реакции только до степени окисления +4 (в SO 2).

— с разбавленной азотной кислотой

Реакция меди с разбавленной HNO 3 приводит к образованию нитрата меди (II) и монооксида азота:

3Cu + 8HNO 3 (разб.) = 3Cu(NO 3) 2 + 2NO + 4H 2 O

— с концентрированной азотной кислотой

Концентрированная HNO 3 легко реагирует с медью при обычных условиях. Отличие реакции меди с концентрированной азотной кислотой от взаимодействия с разбавленной азотной кислотой заключается в продукте восстановления азота. В случае концентрированной HNO 3 азот восстанавливается в меньшей степени: вместо оксида азота (II) образуется оксид азота (IV), что связано с большей конкуренцией между молекулами азотной кислоты в концентрированной кислоте за электроны восстановителя (Cu):

Cu + 4HNO 3 = Cu(NO 3) 2 + 2NO 2 + 2H 2 O

с оксидами неметаллов

Медь реагирует с некоторыми оксидами неметаллов. Например, с такими оксидами, как NO 2 , NO, N 2 O медь окисляется до оксида меди (II), а азот восстанавливается до степени окисления 0, т.е. образуется простое вещество N 2:

В случае диоксида серы, вместо простого вещества (серы) образуется сульфид меди(I). Связано это с тем, что медь с серой, в отличие от азота, реагирует:

с оксидами металлов

При спекании металлической меди с оксидом меди (II) при температуре 1000-2000 о С может быть получен оксид меди (I):

Также металлическая медь может восстановить при прокаливании оксид железа (III) до оксида железа (II):

с солями металлов

Медь вытесняет менее активные металлы (правее нее в ряду активности) из растворов их солей:

Cu + 2AgNO 3 = Cu(NO 3) 2 + 2Ag↓

Также имеет место интересная реакция, в которой медь растворяется в соли более активного металла – железа в степени окисления +3. Однако противоречий нет, т.к. медь не вытесняет железо из его соли, а лишь восстанавливает его со степени окисления +3 до степени окисления +2:

Fe 2 (SO 4) 3 + Cu = CuSO 4 + 2FeSO 4

Cu + 2FeCl 3 = CuCl 2 + 2FeCl 2

Последняя реакция используется при производстве микросхем на стадии травления медных плат.

Коррозия меди

Медь со временем подвергается коррозии при контакте с влагой, углекислым газом и кислородом воздуха:

2Cu + H 2 O + СО 2 + О 2 = (CuOН) 2 СO 3

В результате протекания данной реакции медные изделия покрываются рыхлым сине-зеленым налетом гидроксокарбоната меди (II).

Химические свойства цинка

Цинк Zn находится в IIБ группе IV-го периода. Электронная конфигурация валентных орбиталей атомов химического элемента в основном состоянии 3d 10 4s 2 . Для цинка возможна только одна единственная степень окисления, равная +2. Оксид цинка ZnO и гидроксид цинка Zn(ОН) 2 обладают ярко выраженными амфотерными свойствами.

Цинк при хранении на воздухе тускнеет, покрываясь тонким слоем оксида ZnO. Особенно легко окисление протекает при высокой влажности и в присутствии углекислого газа вследствие протекания реакции:

2Zn + H 2 O + O 2 + CO 2 → Zn 2 (OH) 2 CO 3

Пар цинка горит на воздухе, а тонкая полоска цинка после накаливания в пламени горелки сгорает в нем зеленоватым пламенем:

При нагревании металлический цинк также взаимодействует с галогенами, серой, фосфором:

С водородом, азотом, углеродом, кремнием и бором цинк непосредственно не реагирует.

Цинк реагирует с кислотами-неокислителями с выделением водорода:

Zn + H 2 SO 4 (20%) → ZnSO 4 + H 2

Zn + 2HCl → ZnCl 2 + H 2

Особенно легко растворяется в кислотах технический цинк, поскольку содержит в себе примеси других менее активных металлов, в частности, кадмия и меди. Высокочистый цинк по определенным причинам устойчив к воздействию кислот. Для того чтобы ускорить реакцию, образец цинка высокой степени чистоты приводят в соприкосновение с медью или добавляют в раствор кислоты немного соли меди.

При температуре 800-900 o C (красное каление) металлический цинк, находясь в расплавленном состоянии, взаимодействует с перегретым водяным паром, выделяя из него водород:

Zn + H 2 O = ZnO + H 2

Цинк реагирует также и с кислотами-окислителями: серной концентрированной и азотной.

Цинк как активный металл может образовывать с концентрированной серной кислотой сернистый газ, элементарную серу и даже сероводород.

Zn + 2H 2 SO 4 = ZnSO 4 + SO 2 + 2H 2 O

Состав продуктов восстановления азотной кислоты определяется концентрацией раствора:

Zn + 4HNO 3 (конц.) = Zn(NO 3) 2 + 2NO 2 + 2H 2 O

3Zn + 8HNO 3 (40%) = 3Zn(NO 3) 2 + 2NO + 4H 2 O

4Zn +10HNO 3 (20%) = 4Zn(NO 3) 2 + N 2 O + 5H 2 O

5Zn + 12HNO 3 (6%) = 5Zn(NO 3) 2 + N 2 + 6H 2 O

4Zn + 10HNO 3 (0,5%) = 4Zn(NO 3) 2 + NH 4 NO 3 + 3H 2 O

На направление протекания процесса влияют также температура, количество кислоты, чистота металла, время проведения реакции.

Цинк реагирует с растворами щелочей, при этом образуются тетрагидроксоцинкаты и водород:

Zn + 2NaOH + 2H 2 O = Na 2 + H 2

Zn + Ba(OH) 2 + 2H 2 O = Ba + H 2

С безводными щелочами цинк при сплавлении образует цинкаты и водород:

В сильнощелочной среде цинк является крайне сильным восстановителем, способным восстанавливать азот в нитратах и нитритах до аммиака:

4Zn + NaNO 3 + 7NaOH + 6H 2 O → 4Na 2 + NH 3

Благодаря комплексообразованию цинк медленно растворяется в растворе аммиака, восстанавливая водород:

Zn + 4NH 3 ·H 2 O → (OH) 2 + H 2 + 2H 2 O

Также цинк восстанавливает менее активные металлы (правее него в ряду активности) из водных растворов их солей:

Zn + CuCl 2 = Cu + ZnCl 2

Zn + FeSO 4 = Fe + ZnSO 4

Химические свойства хрома

Хром - элемент VIB группы таблицы Менделеева. Электронная конфигурация атома хрома записывается как 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 , т.е. в случае хрома, также как и в случае атома меди, наблюдается так называемый «проскок электрона»

Наиболее часто проявляемыми степенями окисления хрома являются значения +2, +3 и +6. Их следует запомнить, и в рамках программы ЕГЭ по химии можно считать, что других степеней окисления хром не имеет.

При обычных условиях хром устойчив к коррозии как на воздухе, так и в воде.

Взаимодействие с неметаллами

с кислородом

Раскаленный до температуры более 600 o С порошкообразный металлический хром сгорает в чистом кислороде образуя окcид хрома (III):

4Cr + 3O 2 = o t => 2Cr 2 O 3

с галогенами

С хлором и фтором хром реагирует при более низких температурах, чем с кислородом (250 и 300 o C соответственно):

2Cr + 3F 2 = o t => 2CrF 3

2Cr + 3Cl 2 = o t => 2CrCl 3

С бромом же хром реагирует при температуре красного каления (850-900 o C):

2Cr + 3Br 2 = o t => 2CrBr 3

с азотом

С азотом металлический хром взаимодействует при температурах более 1000 o С:

2Cr + N 2 = o t => 2CrN

с серой

С серой хром может образовывать как сульфид хрома (II) так и сульфид хрома (III), что зависит от пропорций серы и хрома:

Cr + S = o t => CrS

2Cr + 3S = o t => Cr 2 S 3

С водородом хром не реагирует.

Взаимодействие со сложными веществами

Взаимодействие с водой

Хром относится к металлам средней активности (расположен в ряду активности металлов между алюминием и водородом). Это означает, что реакция протекает между раскаленным до красного каления хромом и перегретым водяным паром:

2Cr + 3H 2 O = o t => Cr 2 O 3 + 3H 2

Взаимодействие с кислотами

Хром при обычных условиях пассивируется концентрированными серной и азотной кислотами, однако, растворяется в них при кипячении, при этом окисляясь до степени окисления +3:

Cr + 6HNO 3(конц.) =t o => Cr(NO 3) 3 + 3NO 2 + 3H 2 O

2Cr + 6H 2 SO 4(конц) =t o => Cr 2 (SO 4) 3 + 3SO 2 + 6H 2 O

В случае разбавленной азотной кислоты основным продуктом восстановления азота является простое вещество N 2:

10Cr + 36HNO 3(разб) = 10Cr(NO 3) 3 + 3N 2 + 18H 2 O

Хром расположен в ряду активности левее водорода, а это значит, что он способен выделять H 2 из растворов кислот-неокислителей. В ходе таких реакций в отсутствие доступа кислорода воздуха образуются соли хрома (II):

Cr + 2HCl = CrCl 2 + H 2

Cr + H 2 SO 4(разб.) = CrSO 4 + H 2

При проведении же реакции на открытом воздухе, двухвалентный хром мгновенно окисляется содержащимся в воздухе кислородом до степени окисления +3. При этом, например, уравнение с соляной кислотой примет вид:

4Cr + 12HCl + 3O 2 = 4CrCl 3 + 6H 2 O

При сплавлении металлического хрома с сильными окислителями в присутствии щелочей хром окисляется до степени окисления +6, образуя хроматы :

Химические свойства железа

Железо Fe, химический элемент, находящийся в VIIIB группе и имеющий порядковый номер 26 в таблице Менделеева. Распределение электронов в атоме железа следующее 26 Fe1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 , то есть железо относится к d-элементам, поскольку заполняемым в его случае является d-подуровень. Для него наиболее характерны две степени окисления +2 и +3. У оксида FeO и гидроксида Fe(OH) 2 преобладают основные свойства, у оксида Fe 2 O 3 и гидроксида Fe(OH) 3 заметно выражены амфотерные. Так оксид и гидроксид железа (lll) в некоторой степени растворяются при кипячении в концентрированных растворах щелочей, а также реагируют с безводными щелочами при сплавлении. Следует отметить что степень окисления железа +2 весьма неустойчива, и легко переходит в степень окисления +3. Также известны соединения железа в редкой степени окисления +6 – ферраты, соли не существующей «железной кислоты» H 2 FeO 4 . Указанные соединения относительно устойчивы лишь в твердом состоянии, либо в сильнощелочных растворах. При недостаточной щелочности среды ферраты довольно быстро окисляют даже воду, выделяя из нее кислород.

Взаимодействие с простыми веществами

С кислородом

При сгорании в чистом кислороде железо образует, так называемую, железную окалину , имеющую формулу Fe 3 O 4 и фактически представляющую собой смешанный оксид, состав которого условно можно представить формулой FeO∙Fe 2 O 3 . Реакция горения железа имеет вид:

3Fe + 2O 2 =t o => Fe 3 O 4

С серой

При нагревании железо реагирует с серой, образуя сульфид двухвалентого железа:

Fe + S =t o => FeS

Либо же при избытке серы дисульфид железа :

Fe + 2S =t o => FeS 2

С галогенами

Всеми галогенами кроме йода металлическое железо окисляется до степени окисления +3, образуя галогениды железа (lll):

2Fe + 3F 2 =t o => 2FeF 3 – фторид железа (lll)

2Fe + 3Cl 2 =t o => 2FeCl 3 – хлорид железа (lll)

Йод же, как наиболее слабый окислитель среди галогенов, окисляет железо лишь до степени окисления +2:

Fe + I 2 =t o => FeI 2 – йодид железа (ll)

Следует отметить, что соединения трехвалентного железа легко окисляют иодид-ионы в водном растворе до свободного йода I 2 при этом восстанавливаясь до степени окисления +2. Примеры, подобных реакций из банка ФИПИ:

2FeCl 3 + 2KI = 2FeCl 2 + I 2 + 2KCl

2Fe(OH) 3 + 6HI = 2FeI 2 + I 2 + 6H 2 O

Fe 2 O 3 + 6HI = 2FeI 2 + I 2 + 3H 2 O

С водородом

Железо с водородом не реагирует (с водородом из металлов реагируют только щелочные металлы и щелочноземельные):

Взаимодействие со сложными веществами

Взаимодействие с кислотами

С кислотами-неокислителями

Так как железо расположено в ряду активности левее водорода, это значит, что оно способно вытеснять водород из кислот-неокислителей (почти все кислоты кроме H 2 SO 4 (конц.) и HNO 3 любой концентрации):

Fe + H 2 SO 4 (разб.) = FeSO 4 + H 2

Fe + 2HCl = FeCl 2 + H 2

Нужно обратить внимание на такую уловку в заданиях ЕГЭ, как вопрос на тему того до какой степени окисления окислится железо при действии на него разбавленной и концентрированной соляной кислоты. Правильный ответ – до +2 в обоих случаях.

Ловушка здесь заключается в интуитивном ожидании более глубокого окисления железа (до с.о. +3) в случае его взаимодействия с концентрированной соляной кислотой.

Взаимодействие с кислотами-окислителями

С концентрированными серной и азотной кислотами в обычных условиях железо не реагирует по причине пассивации. Однако, реагирует с ними при кипячении:

2Fe + 6H 2 SO 4 = o t => Fe 2 (SO 4) 3 + 3SO 2 + 6H 2 O

Fe + 6HNO 3 = o t => Fe(NO 3) 3 + 3NO 2 + 3H 2 O

Обратите внимание на то, что разбавленная серная кислота окисляет железо до степени окисления +2, а концентрированная до +3.

Коррозия (ржавление) железа

На влажном воздухе железо весьма быстро подвергается ржавлению:

4Fe + 6H 2 O + 3O 2 = 4Fe(OH) 3

С водой в отсутствие кислорода железо не реагирует ни в обычных условиях, ни при кипячении. Реакция с водой протекает лишь при температуре выше температуры красного каления (>800 о С). т.е..

Заявка

CuO

Физико-химические данные оксида CuO:

Оксид меди II внешний вид: твердые гранулы коричнево-бурого или черно-бурого цвета, тонкий порошок черного цвета.

Применение оксида CuO: для комбикормов, для получения катализаторов, как пигмент для стекла, керамики, эмалей, в лабораторной практике.

Оксиды меди (II) порошок ТУ 6-09-02-391-85

Показатели качества оксида

ОСЧ.92 (2611210664)

М.д. основного вещества ≥ 99%
Нераств. В HCl вещества ≤ 0,02%
Раств. в воде вещества ≤ 0,02%
Азот общий (N) ≤ 0,002%
Сера общая (SO 4) ≤ 0,01%
Хлориды (Cl) ≤ 0,003%
Органические примеси (С) ≤ 0,002%
Железо (Fe) ≤ 0,02%
Кобальт (Со) ≤ 0,0003%
Барий (Ba) ≤ 0,0003%
Кадмий (Cd) ≤ 0,0003%
Свинец (Pb) ≤ 0,005%
Цинк (Zn) ≤ 0,003%
Щелочные (K+Na+Ca) ≤ 0,1%
Ртуть (Hg) ≤ 0,0001%
Фосфор (Р) ≤ 0,0001%
Мышьяк (As) ≤ 0,001%
Стронций (Sr) ≤ 0,0003%

Гарантийный срок хранения оксида 3 года.

Основным оксидом меди (двухвалентной) является окись. Химическая формула оксида - СuО. Оксид меди II физически представляют собой кристаллы черного цвета, которые обладают высокой структурной устойчивостью, а потому фактически не растворяются в воде. Оксид меди II является гигроскопичным. Это вещество встречается в тенерите - минерале, который достаточно распространен в природе. Добыча данного вещества осуществляется методом прокалывания гидроксокарбоната меди. Также для этих целей подходит и Cu(NO3)2 - нитрат.

Оксид меди II обладает ярко выраженными окислительными свойствами. Под влиянием окиси находящийся в том или ином органическом соединении углерод превращается в диоксид углерода. Что касается водорода, то он преобразовывается в воду. Данный процесс осуществляется благодаря нагреву вещества и последующему окислению. Сам оксид восстанавливается в виде металлической меди. Эта реакция является одной из наиболее распространенных для проведения элементарного анализа, связанного с определением наличия в органическом материале водорода и углерода.

Мягкий, идеально подходящий для ковки металл, который известен под названием Cuprum, широко использовался еще несколько столетий назад. Входящий в число семи наиболее распространенных во всем мире металлов, Cu имеет розовый оттенок, который может быть разбавлен бурым цветом. Обладающий высокой плотностью, медь - это металл, является очень качественным проводником не только тока, но, что немаловажно, тепла. В данном компоненте он уступает лишь серебру, при этом имея большую доступность. Благодаря мягкости вещества легко можно сделать проволоку или очень тонкий листовой прокат.

Отличительная черта Cu - низкая химическая активность. Воздух фактически никоим образом не влияет на данный металл. Кислород, а также водород и углерод, не взаимодействуют с медью, не смотря на высокую температуру. Тем не менее, с другими веществами Cu активно вступает в химическую реакцию. С различными кислотами, которые не обладают окислительной способностью, данный металл не взаимодействует, однако если в реакции присутствует кислород, то Cu способна растворятся в них, образуя при этом соли.

Представляющих каждый из них, очень много, но лидирующее положение, несомненно, занимают оксиды. У одного химического элемента может быть сразу несколько разных бинарных соединений с кислородом. Такое свойство имеет и медь. У нее существует три оксида. Давайте рассмотрим их детальнее.

Оксид меди (I)

Его формула - Cu 2 O. В некоторых источниках данное соединение могут называть гемиоксидом меди, оксидом димеди или закисью меди.

Свойства

Является кристаллическим веществом, имеющим коричнево-красный цвет. Этот оксид не растворяется в воде и этиловом спирте. Может плавиться, не разлагаясь, при температуре чуть больше 1240 о С. Данное вещество не взаимодействует с водой, но может переводиться в раствор, если участниками реакции с ним будут концентрированные хлоровородная кислота, щелочь, азотная кислота, гидрат аммиака, соли аммония, серная кислота.

Получение оксида меди (I)

Его можно получить, нагрев металлическую медь, или в такой среде, где кислород имеет малую концентрацию, а также в токе некоторых оксидов азота и вместе с оксидом меди (II). Кроме того, он может стать продуктом реакции термического разложения последнего. Оксид меди (I) получится и в том случае, если нагреть сульфид меди (I) в токе кислорода. Есть и другие, более сложные способы его получения (например, восстановление одного из гидроксидов меди, ионный обмен любой соли одновалентной меди с щелочью и т.п.), но их практикуют только в лабораториях.

Применение

Нужен в качестве пигмента, когда окрашивают керамику, стекло; компонента красок, которые защищают подводную часть судна от обрастания. Используется также как фунгицид. Без него не обходятся и меднозакисные вентили.

Оксид меди (II)

Его формула - CuO. Во многих источниках может встречаться под названием окиси меди.

Свойства

Это высший оксид меди. Вещество имеет вид черных кристаллов, которые почти не растворяются в воде. Взаимодействует с кислотой и при этой реакции образует соответствующую соль двухвалентной меди, а также воду. При его сплавлении с щелочью продукты реакции представлены купратами. Разложение оксида меди (II) происходит при температуре около 1100 о С. Аммиак, монооксид углерода, водород и уголь способны извлекать из этого соединения металлическую медь.

Получение

Его можно получить при нагревании металлической меди в воздушной среде при одном условии - температура нагревания должна быть ниже 1100 о С. Также оксид меди (II) может получиться, если нагреть карбонат, нитрат, двухвалентный гидроксид меди.

Применение

С помощью данного оксида окрашивают в зеленый или синий цвет эмаль и стекло, а также производят медно-рубиновую разновидность последнего. В лаборатории этим оксидом обнаруживают восстановительные свойства веществ.

Оксид меди (III)

Его формула - Cu 2 O 3 . Имеет традиционное название, которое звучит, наверное, немного необычно - окисел медь.

Свойства

Имеет вид красных кристаллов, не растворяющихся в воде. Разложение этого вещества происходит при температуре 400 о С, продукты данной реакции - оксид меди (II) и кислород.

Получение

Его можно получить, окисляя двухвалентный гидроксид меди с помощью пероксидисульфата калия. Необходимое условие реакции - щелочная среда, в которой она должна происходить.

Применение

Данное вещество само по себе не используется. В науке и промышленности более широкое распространение находят продукты его разложения - оксид меди (II) и кислород.

Заключение

Вот и все оксиды меди. Их несколько из-за того, что медь имеет переменную валентность. Существуют и другие элементы, у которых есть по несколько оксидов, но о них поговорим в другой раз.

Cuprum (Cu) относится к числу малоактивных металлов. Для него характерно образование химических соединений со степенями окисления +1 и +2. Так, например, два окисла, представляющих собой соединение из двух элементов Cu и кислорода O: со степенью окисления +1 — закись меди Cu2O и степенью окисления +2 — окись меди CuO. Несмотря на то, что состоят они из одинаковых химических элементов, но каждый из них имеет свои особые характеристики. На холоде металл очень слабо взаимодействует с кислородом воздуха, покрываясь пленкой, представляющей собой оксид меди, который препятствует дельнейшему окислению cuprum. При нагревании это простое вещество с порядковым номером 29 в таблице Менделеева полностью окисляется. При этом образуется также оксид меди (II): 2Cu + O2 → 2CuO.

Закись представляет собой коричневато-красное твердое вещество с молярной массой 143,1 г/моль. Соединение имеет температуру плавления 1235°С, температуру кипения 1800°С. Оно не растворяется в воде, но растворяется в кислотах. Разводится оксид меди (I) в (концентрированном), при этом образуется бесцветный комплекс +, который легко окисляется на воздухе до аммиачного комплекса сине-фиолетового цвета 2+, растворяющегося в соляной кислоте с образованием CuCl2. В истории полупроводниковой физики Cu2O является одним из наиболее изученных материалов.

Оксид меди (I), известный также как гемиоксид, обладает основными свойствами. Он может быть получен окислением металла: 4Cu + O2 → 2 Cu2O. Примеси, такие как вода и кислоты, влияют на скорость этого процесса, а также дальнейшее окисление до двухвалентного оксида. Закись меди может растворяться в при этом образуется чистый металл и соль: H2SO4 + Cu2O → Cu + CuSO4 + H2O. По аналогичной схеме происходит взаимодействие окисла со степенью +1 с другими кислородосодержащими кислотами. При взаимодействии гемиоксида с галогенсодержащими кислотами образуются соли одновалентного металла: 2HCl + Cu2O → 2CuCl + H2O.

Встречается оксид меди (I) в природе в виде красной руды (это устаревшее название, наряду с таким как рубиновая Cu), называемой минералом «Куприт». На его образование требуется длительное время. Он может быть получен искусственно при высоких температурах или под высоким давлением кислорода. Гемиоксид обычно используется как фунгицид, как пигмент, как противообрастающее средство в подводной или морской краске, и применяется также в качестве катализатора.

Однако воздействие этого вещества с химической формулой Cu2O на организм может быть опасным. При вдыхании вызывает одышку, кашель, а также изъязвление и перфорацию дыхательных путей. При попадании внутрь раздражает желудочно-кишечный тракт, что сопровождается рвотой, болью и диареей.

    H2 + CuO → Cu + H2O;

    CO + CuO → Cu + CO2.

Используется оксид меди (II) в керамике (как пигмент) для получения глазури (синей, зеленой и красной, а иногда и розовой, серой или черной). Он также применяется в качестве пищевой добавки у животных с целью уменьшения дефицита cuprum в организме. Это абразивный материал, который необходим для полировки оптического оборудования. Он используется для производства сухих батарей, для получения других солей Cu. Соединение CuO также применяется при сварке медных сплавов.

Воздействие химического соединения CuO также может быть опасным для организма человека. При вдыхании вызывает раздражение легких. Оксид меди (II) может вызвать лихорадку металлических паров (MFF). Окись Cu провоцирует изменение цвета кожи, могут появиться проблемы со зрением. При попадании в организм, как и гемиоксид, приводит к отравлению, которое сопровождается симптомами в виде рвоты и болевых ощущений.

МЕДЬ И ЕЕ СОЕДИНЕНИЯ

УРОК В 11-м ЕСТЕСТВЕННО-НАУЧНОМ КЛАССЕ

Для повышения познавательной активности и самостоятельности учащихся мы используем уроки коллективного изучения материала. На таких уроках каждый ученик (или пара учеников) получает задание, о выполнении которого он должен отчитаться на этом же уроке, причем его отчет фиксируется остальными учениками класса в тетрадях и является элементом содержания учебного материала урока. Каждый ученик вносит свою лепту в изучение темы классом.
В ходе урока меняется режим работы учеников от интраактивного (режим, при котором информационные потоки замкнуты внутри обучаемых, характерен для самостоятельной работы) к интерактивному (режим, при котором информационные потоки двусторонние, т.е. информация идет и от ученика, и к ученику, происходит обмен информацией). Учитель при этом выступает как организатор процесса, корректирует и дополняет информацию, сообщаемую учениками.
Уроки коллективного изучения материала состоят из следующих этапов:
1-й этап – установочный, на котором учитель объясняет цели и программу работы на уроке (до 7 мин);
2-й этап – самостоятельная работа учащихся по инструкции (до 15 мин);
3-й этап – обмен информацией и подведение итогов урока (занимает все оставшееся время).
Урок «Медь и ее соединения» рассчитан на классы с углубленным изучением химии (4 ч химии в неделю), проводится в течение двух академических часов, на уроке актуализируются знания учащихся по следующим темам: «Общие свойства металлов», «Отношение к металлам концентрированной серной кислоты, азотной кислоты», «Качественные реакции на альдегиды и многоатомные спирты», «Окисление предельных одноатомных спиртов оксидом меди(II)», «Комплексные соединения».
Перед уроком учащиеся получают домашнее задание: повторить перечисленные темы. Предварительная подготовка учителя к уроку заключается в составлении инструктивных карточек для учащихся и подготовке наборов для лабораторных опытов.

ХОД УРОКА

Установочный этап

Учитель ставит перед учащимися цель урока : опираясь на имеющиеся знания о свойствах веществ, спрогнозировать, подтвердить практически, обобщить сведения о меди и ее соединениях.
Учащиеся составляют электронную формулу атома меди, выясняют, какие степени окисления может проявлять медь в соединениях, какими свойствами (окислительно-восстановительными, кислотно-основными) будут обладать соединения меди.
В тетрадях учеников появляется таблица.

Свойства меди и ее соединений

Металл Cu 2 O – основный оксид CuO – основный оксид
Восстановитель CuOH – неустойчивое основание Cu(OH) 2 – нерастворимое основание
CuCl – нерастворимая соль CuSO 4 – растворимая соль
Обладают окислительно-восстановительной двойственностью Окислители

Этап самостоятельной работы

Для подтверждения и дополнения предположений учащиеся выполняют лабораторные опыты по инструкции и записывают уравнения проведенных реакций.

Инструкции для самостоятельной работы парами

1. Прокалите медную проволоку в пламени. Отметьте, как изменился ее цвет. Горячую прокаленную медную проволоку поместите в этиловый спирт. Обратите внимание на изменение ее цвета. Повторите эти манипуляции 2–3 раза. Проверьте, не изменился ли запах этанола.
Запишите два уравнения реакций, соответствующие проведенным превращениям. Какие свойства меди и ее оксида подтверждаются этими реакциями?

2. К оксиду меди(I) прилейте соляную кислоту.
Что наблюдаете? Запишите уравнения реакций, учитывая, что хлорид меди(I) – нерастворимое соединение. Какие свойства меди(I) подтверждаются этими реакциями?

3. а) В раствор сульфата меди(II) поместите гранулу цинка. Если реакция не идет, нагрейте раствор. б) К оксиду меди(II) прилейте 1 мл серной кислоты и нагрейте.
Что наблюдаете? Запишите уравнения реакций. Какие свойства соединений меди подтверждаются этими реакциями?

4. В раствор сульфата меди(II) поместите полоску универсального индикатора.
Объясните результат. Запишите ионное уравнение гидролиза по I ступени.
К раствору карбоната натрия прилейте раствор сульфата мед(II).
Что наблюдаете? Запишите уравнение реакции совместного гидролиза в молекулярном и ионном видах.

5.
Что наблюдаете?
К полученному осадку прилейте раствор аммиака.
Какие изменения произошли? Запишите уравнения реакций. Какие свойства соединений меди доказывают проведенные реакции?

6. К сульфату меди(II) прилейте раствор йодида калия.
Что наблюдаете? Составьте уравнение реакции. Какое свойство меди(II) доказывает эта реакция?

7. В пробирку с 1 мл концентрированной азотной кислоты поместите небольшой кусочек медной проволоки. Закройте пробирку пробкой.
Что наблюдаете? (Пробирку отнесите под тягу.) Запишите уравнение реакции.
В другую пробирку налейте соляной кислоты, поместите в нее небольшой кусочек медной проволоки.
Что наблюдаете? Объясните свои наблюдения. Какие свойства меди подтверждаются этими реакциями?

8. К сульфату меди(II) прилейте избыток гидроксида натрия.
Что наблюдаете? Полученный осадок нагрейте. Что произошло? Запишите уравнения реакций. Какие свойства соединений меди подтверждаются этими реакциями?

9. К сульфату меди(II) прилейте избыток гидроксида натрия.
Что наблюдаете?
К полученному осадку прилейте раствор глицерина.
Какие изменения произошли? Запишите уравнения реакций. Какие свойства соединений меди доказывают эти реакции?

10. К сульфату меди(II) прилейте избыток гидроксида натрия.
Что наблюдаете?
К полученному осадку прилейте раствор глюкозы и нагрейте.
Что получилось? Запишите уравнение реакции, используя для обозначения глюкозы общую формулу альдегидов

Какое свойство соединения меди доказывает эта реакция?

11. К сульфату меди(II) прилейте: а) раствор аммиака; б) раствор фосфата натрия.
Что наблюдаете? Запишите уравнения реакций. Какие свойства соединений меди доказывают проведенные реакции?

Этап обмена информацией и подведение итогов

Учитель задает вопрос, касающийся свойств конкретного вещества. Учащиеся, выполнявшие соответствующие опыты, докладывают о проведенном эксперименте и записывают уравнения реакций на доске. Затем учитель и ученики дополняют сведения о химических свойствах вещества, которые невозможно было подтвердить реакциями в условиях школьной лаборатории.

Порядок обсуждения химических свойств соединений меди

1. Как медь реагирует с кислотами, с какими еще веществами может реагировать медь?

Записываются уравнения реакций меди с:

Концентрированной и разбавленной азотной кислотой:

Cu + 4HNO 3 (конц.) = Cu(NO 3) 2 + 2NO 2 + 2H 2 O,
3Cu + 8HNO 3 (разб.) = 3Cu(NO 3) 2 + 2NO + 4H 2 O;

Концентрированной серной кислотой:

Cu + 2H 2 SO 4 (конц.) = CuSO 4 + SO 2 + 2H 2 O;

Кислородом:

2Cu + O 2 = 2CuO;

Cu + Cl 2 = CuCl 2 ;

Соляной кислотой в присутствии кислорода:

2Cu + 4HCl + O 2 = 2CuCl 2 + 2H 2 O;

Хлоридом железа(III):

2FeCl 3 + Cu = CuCl 2 + 2FeCl 2 .

2. Какие свойства проявляют оксид и хлорид меди(I)?

Обращается внимание на осно"вные свойства, способность к комплексообразованию, окислительно-восстановительную двойственность. Записываются уравнения реакций оксида меди(I) с:

Соляной кислотой до образования CuCl:

Cu 2 O + 2HCl = 2CuCl + H 2 O;

Избытком HCl:

CuCl + HCl = H;

Реакций восстановления и окисления Cu 2 O:

Cu 2 O + H 2 = 2Cu + H 2 O,

2Cu 2 O + O 2 = 4CuO;

Диспропорционирования при нагревании:

Cu 2 O = Cu + CuO,
2CuCl = Cu + CuCl 2 .

3. Какие свойства проявляет оксид меди(II)?

Обращается внимание на осно"вные и окислительные свойства. Записываются уравнения реакций оксида меди(II) с:

Кислотой:

CuO + 2H + = Cu 2+ + H 2 O;

Этанолом:

C 2 H 5 OH + CuO = CH 3 CHO + Cu + H 2 O;

Водородом:

CuO + H 2 = Cu + H 2 O;

Алюминием:

3CuO + 2Al = 3Cu + Al 2 O 3 .

4. Какие свойства проявляет гидроксид меди(II)?

Обращается внимание на окислительные, осно"вные свойства, способность к комплексообразованию с органическими и неорганическими соединениями. Записываются уравнения реакций с:

Альдегидом:

RCHO + 2Cu(OH) 2 = RCOOH + Cu 2 O + 2H 2 O;

Кислотой:

Cu(OH) 2 + 2H + = Cu 2+ + 2H 2 O;

Аммиаком:

Cu(OH) 2 + 4NH 3 = (OH) 2 ;

Глицерином:

Уравнение реакции разложения:

Cu(OH) 2 = CuO + H 2 O.

5. Какие свойства проявляют соли меди(II)?

Обращается внимание на реакции ионного обмена, гидролиза, окислительные свойства, комплексообразование. Записываются уравнения реакций сульфата меди с:

Гидроксидом натрия:

Cu 2+ + 2OH – = Cu(OH) 2 ;

Фосфатом натрия:

3Cu 2+ + 2= Cu 3 (PO 4) 2 ;

Cu 2+ + Zn = Cu + Zn 2+ ;

Йодидом калия:

2CuSO 4 + 4KI = 2CuI + I 2 + 2K 2 SO 4 ;

Аммиаком:

Cu 2+ + 4NH 3 = 2+ ;

и уравнения реакций:

Гидролиза:

Cu 2+ + HOH = CuOH + + H + ;

Совместного гидролиза с карбонатом натрия с образованием малахита:

2Cu 2+ + 2 + H 2 O = (CuOH) 2 CO 3 + CO 2 .

В дополнение можно рассказать учащимся о взаимодействии оксида и гидроксида меди(II) с щелочами, что доказывает их амфотерность:

Cu(OH) 2 + 2NaOH (конц.) = Na 2 ,

Cu + Cl 2 = CuCl 2 ,

Cu + HgCl 2 = CuCl 2 + Hg,

2Cu + 4HCl + O 2 = 2CuCl 2 + 2H 2 O,

CuO + 2HCl = CuCl 2 + H 2 O,

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O,

CuBr 2 + Cl 2 = CuCl 2 + Br 2 ,

(CuOH) 2 CO 3 + 4HCl = 2CuCl 2 + 3H 2 O + CO 2 ,

2CuCl + Cl 2 = 2CuCl 2 ,

2CuCl = CuCl 2 + Cu,

CuSO 4 + BaCl 2 = CuCl 2 + BaSO 4 .)

Упражнение 3. Составьте цепочки превращений, соответствующие следующим схемам, и осуществите их:

Задача 1. Сплав меди с алюминием обработали сначала избытком щелочи, а затем избытком разбавленной азотной кислоты. Вычислите массовые доли металлов в сплаве, если известно, что объемы газов, выделившихся в обеих реакциях (при одинаковых условиях), равны между собой
.

(Ответ . Массовая доля меди – 84%.)

Задача 2. При прокаливании 6,05 г кристаллогидрата нитрата меди(II) получено 2 г остатка. Определите формулу исходной соли .

(Ответ. Cu(NO 3) 2 3H 2 O.)

Задача 3. Медную пластинку массой 13,2 г опустили в 300 г раствора нитрата железа(III) с массовой долей соли 0,112. Когда ее вынули, оказалось, что массовая доля нитрата железа(III) стала равной массовой доле образовавшейся соли меди(II). Определите массу пластинки после того, как ее вынули из раствора .

(Ответ. 10 г.)

Домашнее задание. Выучить материал, записанный в тетради. Составить цепочку превращений по соединениям меди, содержащую не менее десяти реакций, и осуществить ее.

ЛИТЕРАТУРА

1. Пузаков С.А., Попков В.А. Пособие по химии для поступающих в вузы. Программы. Вопросы, упражнения, задачи. Образцы экзаменационных билетов. М.: Высшая школа, 1999, 575 с.
2. Кузьменко Н.Е., Еремин В.В. 2000 задач и упражнений по химии. Для школьников и абитуриентов. М.: 1-я Федеративная книготорговая компания, 1998, 512 с.