Ряды распределения и группировки. Дискретный статистический ряд

При построении интервального ряда распределения решаются три вопроса:

  • 1. Сколько надо взять интервалов?
  • 2. Какова длина интервалов?
  • 3. Каков порядок включения единиц совокупности в границы интервалов?
  • 1. Количество интервалов можно определить по формуле Стер- джесса :

2. Длина интервала, или шаг интервала , обычно определяется по формуле

где R - размах вариации.

3. Порядок включения единиц совокупности в границы интервала

может быть разным, но при построении интервального ряда распределения обязательно строго определен.

Например, такой: [), при котором единицы совокупности в нижние границы включаются, а в верхние - не включаются, а переносятся в следующий интервал. Исключение в этом правиле составляет последний интервал , верхняя граница которого включает последнее число ранжированного ряда.

Границы интервалов бывают:

  • закрытые - с двумя крайними значениями признака;
  • открытые - с одним крайним значением признака (до такого-то числа или свыше такого-то числа).

С целью усвоения теоретического материала введем исходную информацию для решения сквозной задачи.

Имеются условные данные по среднесписочной численности менеджеров по продажам, количеству проданного ими однокачественного товара, индивидуальной рыночной цене на этот товар, а также объему продаж 30 фирм в одном из регионов РФ в I квартале отчетного года (табл. 2.1).

Таблица 2.1

Исходная информация для сквозной задачи

Численность

менеджеров,

Цена, тыс. руб.

Объем продаж, млн руб.

Численность

менеджеров,

Количество проданного товара, шт.

Цена, тыс. руб.

Объем продаж, млн руб.

На базе исходной информации, а также дополнительной сделаем постановку отдельных заданий. Затем представим методику их решения и сами решения.

Сквозная задача. Задание 2.1

Используя исходные данные табл. 2.1, требуется построить дискретный ряд распределения фирм по количеству проданного товара (табл. 2.2).

Решение:

Таблица 2.2

Дискретный ряд распределения фирм по количеству проданного товара в одном из регионов РФ в I квартале отчетного года

Сквозная задача. Задание 2.2

требуется построить ранжированный ряд 30 фирм по среднесписочной численности менеджеров.

Решение:

15; 17; 18; 20; 20; 20; 22; 22; 24; 25; 25; 25; 27; 27; 27; 28; 29; 30; 32; 32; 33; 33; 33; 34; 35; 35; 38; 39; 39; 45.

Сквозная задача. Задание 2.3

Используя исходные данные табл. 2.1, требуется:

  • 1. Построить интервальный ряд распределения фирм по численности менеджеров.
  • 2. Рассчитать частости ряда распределения фирм.
  • 3. Сделать выводы.

Решение:

Рассчитаем по формуле Стерджесса (2.5) количество интервалов :

Таким образом, берем 6 интервалов (групп).

Длину интервала , или шаг интервала , рассчитаем по формуле

Примечание. Порядок включения единиц совокупности в границы интервала такой: I), при котором единицы совокупности в нижние границы включаются, а в верхние - не включаются, а переносятся в следующий интервал. Исключение в этом правиле составляет последний интервал I ], верхняя граница которого включает последнее число ранжированного ряда.

Строим интервальный ряд (табл. 2.3).

Интервальный ряд распределения фирм но среднесписочной численности менеджеров в одном из регионов РФ в I квартале отчетного года

Вывод. Наиболее многочисленной группой фирм является группа со среднесписочной численностью менеджеров 25- 30 человек, которая включает 8 фирм (27%); в самую малочисленную группу со среднесписочной численностью менеджеров 40-45 человек входит всего одна фирма (3%).

Используя исходные данные табл. 2.1, а также интервальный ряд распределения фирм по численности менеджеров (табл. 2.3), требуется построить аналитическую группировку зависимости между численностью менеджеров и объемом продаж фирм и на основании ее сделать вывод о наличии (или отсутствии) связи между указанными признаками.

Решение:

Аналитическая группировка строится по факторному признаку. В нашей задаче факторным признаком (х) является численность менеджеров, а результативным признаком (у) - объем продаж (табл. 2.4).

Построим теперь аналитическую группировку (табл. 2.5).

Вывод. На основании данных построенной аналитической группировки можно сказать, что с увеличением численности менеджеров по продажам средний в группе объем продаж фирмы также увеличивается, что свидетельствует о наличии прямой связи между указанными признаками.

Таблица 2.4

Вспомогательная таблица для построения аналитической группировки

Численность менеджеров, чел.,

Номер фирмы

Объем продаж, млн руб., у

» = 59 f = 9,97

Я-™ 4 - Ю.22

74 ’25 1ПЙ1

У4 = 7 = 10,61

у = ’ =10,31 30

Таблица 2.5

Зависимость объемов продаж от численности менеджеров фирм в одном из регионов РФ в I квартале отчетного года

КОНТРОЛЬНЫЕ ВОПРОСЫ
  • 1. В чем суть статистического наблюдения?
  • 2. Назовите этапы статистического наблюдения.
  • 3. Каковы организационные формы статистического наблюдения?
  • 4. Назовите виды статистического наблюдения.
  • 5. Что такое статистическая сводка?
  • 6. Назовите виды статистических сводок.
  • 7. Что такое статистическая группировка?
  • 8. Назовите виды статистических группировок.
  • 9. Что такое ряд распределения?
  • 10. Назовите конструктивные элементы ряда распределения.
  • 11. Каков порядок построения ряда распределения?

Располагая данные статистического наблюдения, характеризующих то или иное явление, прежде всего необходимо их упорядочить, т.е. придать характер системности

Английский статистик. УДжРейхман по поводу неупорядоченных совокупностей образно сказал, что столкнуться с массой необобщенных данных равнозначно ситуации, когда человека бросают в лесной чаще без компаса. Что же собой представляет систематизация статистических данных в виде рядов распределениялу?

Статистический ряд распределения - это упорядоченные статистические совокупности (табл. 17). Простейшим видом статистического ряда распределения ранжированном ряд, т.е. ряд чисел, находящейся в порядке возрастания ч или падения варьируя признаки. Такой ряд не позволяет судить о закономерности, заложенные в распределенных данных: у какой величины группируется большинство показателей, какие есть отклонения от этой величины; как а общая картина распределения. С этой целью группируют данные, показывая, как часто встречаются отдельные наблюдения в общем их числе (Схема 1а 1).

. Таблица 17

. Общий вид статистических рядов распределения

. Схема 1. Схемастатистичних рядов распределения

Распределение единиц совокупности по признакам, не имеют количественного выражения, называется атрибутивным рядом (например, распределение предприятий по их производственным направлением)

Ряды распределения единиц совокупности по признакам, имеют количественное выражение, называются вариационными рядами . В таких рядах значение признака (варианты) находятся в порядке возрастания или убывания

В вариационном ряде распределения различают два элемента: варианта и частота. Варианта - это отдельное значение группировочного признаки частота - число, которое показывает, сколько раз встречается каждый варианта

В математической статистике исчисляется еще один элемент вариационного ряда - частисть . Последняя определяется как отношение частоты случаев данного интервала к общей сумме частот частисть определяется в долях единицы, процентах (%) в промилле (% о)

Таким образом, вариационный ряд распределения - это такой ряд, в котором варианты расположены в порядке возрастания или убывания, указаны их частоты или частости. Вариационные ряды бывают дискретные (переривни) и др. нтервальни (непрерывного).

. Дискретные вариационные ряды - это такие ряды распределения, в которых варианта как величина количественного признака может принимать только определенное значение. Варианты различаются между собой на одну или несколько единиц

Так, количество произведенных деталей за смену конкретным рабочим может выражаться только одним определенным числом (6, 10, 12 и тд). Примером дискретного вариационного ряда может быть распределение работников по к количеством произведенных деталей (табл 18 18).

. Таблица 18

. Дискретный ряд распределения _

. Интервальные (непрерывного) вариационные ряды - такие ряды распределения, в которых значение варианты даны в виде интервалов, т.е. значения признаков могут отличаться друг от друга на сколь угодно малую величину. При построении вариационного ряда нэп переривнои признаки невозможно указать каждое значение варианты, поэтому совокупность распределяется по интервалам. Последние могут быть равны и неравны. Для каждого из них указываются частоты или частости (табл. 1 9 19).

В интервальных рядах распределения с неравными интервалами вычисляют такие математические характеристики, как плотность распределения и относительная плотность распределения на данном интервале. Первая характеристика определи ся отношением частоты до величины того же интервала, вторая - отношением частости к величине того же интервала. Для приведенного выше примера плотность распределения на первом интервале составит 3: 5 = 0,6, а относительная плотность на этом интервале - 7,5:5 = 1,55%.

. Таблица 19

. Интервальный ряд распределения _

2. Понятие рядов распределения. Дискретные и интервальные ряды распределения

Рядами распределения называются группировки особого вида, при которых по каждому признаку, группе признаков или классу признаков известны численность единиц в группе либо удельный вес этой численности в общем итоге. Т.е. ряд распределения – упорядоченная совокупность значений признака, расположенных в порядке возрастания или убывания с соответствующими им весами. Ряды распределения могут быть построены или по количественному, или по атрибутивному признаку.

Ряды распределения, построенные по количественному признаку, называются вариационными рядами. Они бывают дискретные и интервальные . Ряд распределения может быть построен по не прерывно варьирующему признаку (когда признак может принимать любые значения в рамках какого-либо интервала) и по дискретно варьирующему признаку (принимает строго определенные целочисленные значения).

Дискретным вариационным рядом распределения называется ранжированная совокупность вариантов с соответствующими им частотами или частностями. Варианты дискретного ряда – это дискретно прерывно изменяющиеся значения признак, обычно это результат подсчета.

Дискретные

вариационные ряды строят обычно в том случае, если значения изучаемого признака могут отличаться друг от друга не менее чем на некоторую конечную величину. В дискретных рядах задаются точечные значения признака. Пример : Распределение мужских костюмов, реализованных магазинами за месяц по размерам.

Интервальным

вариационным рядомназывается упорядоченная совокупность интервалов варьирования значений случайной величины с соответствующими частотами или частостями попаданий в каждый из них значений величины. Интервальные ряды предназначены для анализа распределения непрерывно изменяющегося признака, значение которого чаще всего регистрируется путем измерения или взвешивания. Варианты такого ряда – это группировка.

Пример : Распределение покупок в продуктовом магазине по сумме.

Если в дискретных вариационных рядах частотная характеристика относится непосредственно к варианту ряда, то в интервальных к группе вариантов.

Ряды распределения удобно анализировать при помощи их графического изображения, позволяющего судить и о форме распределения, о закономерностях. Дискретный ряд изображается на графике в виде ломаной линии – полигона распределения . Для его построения в прямоугольной системе координат по оси абсцисс в одинаковом масштабе откладываются ранжированные (упорядоченные) значения варьирующего признака, а по оси ординат наносится шкала для выражения частот.

Интервальные ряды изображаются в виде гистограмм распределения (то есть столбиков диаграмм).

При построении гистограммы на оси абсцисс откладываются величины интервалов, а частоты изображаются прямоугольниками, построенными на соответствующих интервалах. Высота столбиков в случае равных интервалов должна быть пропорциональна частотам.

Любая гистограмма может быть преобразована в полигон распределений, для этого необходимо соединить между собой отрезками прямой вершины ее прямоугольников.

2. Индексный метод анализа влияния средней выработки и среднесписочной численности на изменения объема продукции

Индексный метод применяется для анализа динамики и сравнения обобщающих показателей, а так же факторов, влияющих на изменение уровней этих показателей. С помощью индексов можно выявить влияние средней выработки и среднесписочной численности на изменения объема продукции. Эта задача решается путем построения системы аналитических индексов.

Индекс объема продукции с индексом среднесписочной численности работающих и индексом средней выработки связан таким же образом, как объем производства (Q) связан с выработкой (w) и численностью (r) .

Можно заключить, что объем продукции будет равняться произведению средней выработки и среднесписочной численности:

Q = w·r, где Q – объем продукции,

w - средняя выработка,

r – среднесписочная численность.

Как видно, речь идет о взаимосвязи явлений в статике: произведение двух факторов дает общий объем результативного явления. Очевидно также, что эта связь функциональная, следовательно, динамика этой связи изучается с помощью индексов. Для приведенного примера это следующая система:

J w × J r = J wr .

Например, индекс объема продукции Jwr, как индекс результативного явления, можно разложить на два индекса-фактора: индекс средней выработки (Jw), и индекс среднесписочной численности (Jr):

Индекс Индекс Индекс

объема средней среднесписочной

продукции выработки численности

где J w - индекс производительности труда, рассчитываемый по формуле Ласпейреса;

J r - индекс численности работающих, рассчитываемый по формуле Пааше.

Индексные системы используются для определения влияния отдельных факторов на формирование уровня результативного показателя, позволяют по 2-м известным значениям индексов определить значение неизвестного.

На базе приведенной системы индексов можно найти и абсолютный прирост объема продукции, разложенный на влияние факторов.

1. Общий прирост объема продукции:

∆wr = ∑w 1 r 1 - ∑w 0 r 0 .

2. Прирост за счет действия показателя средней выработки:

∆wr/w = ∑w 1 r 1 - ∑w 0 r 1 .

3. Прирост за счет действия показателя среднесписочной численности:

∆wr/r = ∑w 0 r 1 - ∑w 0 r 0

∆wr = ∆wr/w + ∆wr/r.

Пример. Известны следующие данные

Мы можем определить, как изменился объем продукции в относительном и абсолютном выражении и как отдельные факторы повлияли на это изменение.

Объем продукции составил:

в базисном периоде

w 0 * r 0 = 2000 * 90 = 180000,

а в отчетном

w 1 * r 1 = 2100 * 100 = 210000.

Следовательно, объем продукции увеличился на 30000 или на 1,16%.

∆wr=∑w 1 r 1 -∑w 0 r 0= (210000-180000)=30000

или (210000:180000)*100%=1,16%.

Данное изменение объема продукции было обусловлено:

1) увеличением среднесписочной численности на 10 человек или на 111,1%

r 1 /r 0 = 100 / 90 = 1,11 или 111,1%.

В абсолютном выражении за счет этого фактора объем продукции увеличился на 20000:

w 0 r 1 – w 0 r 0 = w 0 (r 1 -r 0) = 2000 (100-90) = 20000.

2) увеличением средней выработки на 105% или на 10000:

w 1 r 1 /w 0 r 1 = 2100*100/2000*100 = 1,05 или 105%.

В абсолютном выражении прирост составляет:

w 1 r 1 – w 0 r 1 = (w 1 -w 0)r 1 = (2100-2000)*100 = 10000.

Отсюда, совместное влияние факторов составило:

1. В абсолютном выражении

10000 + 20000 = 30000

2. В относительном выражении

1,11 * 1,05 = 1,16 (116%)

Следовательно, прирост составляет 1,16%. Оба результата были получены ранее.

Слово «index» в переводе означает указатель, показатель. В статистике индекс трактуется как относительный показатель, характеризующий изменение явления во времени, пространстве или по сравнению с планом. Поскольку индекс относительная величина, наименования индексов созвучны с наименованием относительных величин.

В тех случаях, когда мы анализируем изменение во времени сравниваемой продукции, мы можем поставить вопрос о том, как в различных условиях (на различных участках) меняются составляющие индекса (цена, физический объем, структура производства или реализации отдельных видов продукции). В связи с этим строятся индексы постоянного состава, переменного состава, структурных сдвигов.

Индекс постоянного (фиксированного) состава – это индекс, который характеризует динамику средней величины при одной и той же фиксированной структуре совокупности.

Принцип построения индекса постоянного состава – элиминировать влияние изменений в структуре весов на индексируемую величину путем расчета средневзвешенного уровня индексируемого показателя с одними и теми же весами.

Индекс постоянного состава по своей форме тождественен агрегатному индексу. Агрегатная форма является наиболее распространенной.

Индекс постоянного состава исчисляется с весами, зафиксированными на уровне одного какого-либо периода, и показывает изменение только индексируемой величины. Индекс постоянного состава элиминирует влияние изменений в структуре весов на индексируемую величину путем расчета средневзвешенного уровня индексируемого показателя с одними и теми же весами. В индексах постоянного состава сопоставляются показатели, рассчитанные на базе неизменной структуры явлений.

Предмет математической статистики. Генеральная и выборочная совокупность.

— Математическая статистика – раздел математики, который изучает способы отбора, группировки, систематизации и анализа статистических данных, для получения научно обоснованных выводов.

— Статистические данные – числовые значения рассматриваемого признака изучаемых объектов, полученные как результат случайного эксперимента.

Математическая статистика тесно связана с теорией вероятностей, но в отличие от теории вероятностей, математическая модель эксперимента неизвестна. В математической статистике по статистическим данным необходимо установить неизвестное распределение вероятностей или объективно оценить параметры распределения.

Методы математической статистики позволяют строить оптимальные математические модели массовых, повторяющихся явлений. Связующим звеном между теорией вероятностей и математической статистикой являются предельные теоремы теории вероятностей.

В настоящее время статистические методы используются практически во всех отраслях народного хозяйства.

— Генеральная совокупность – статистические данные всех изучаемых объектов (иногда – сами объекты). Часто генеральную совокупность рассматривают как СВ Х.

— Выборка (выборочная совокупность) – статистические данные объектов, выбранных случайно из генеральной совокупности.

— Объём выборки n (объём генеральной совокупности N ) – количество объектов, выбранных для изучения из генеральной совокупности (количество объектов в генеральной совокупности).

Примеры .

а) Статистическими данными могут быть: рост студентов; количество глаголов (или других частей речи) в отрывке текста определённой длины; средний балл аттестата; уровень интеллекта; число ошибок, допущенных диспетчером и т. п.

б) Генеральной совокупностью может быть: рост всех людей, разряды всех рабочих завода, частота употребления определённой части речи во всех произведениях изучаемого автора, средний балл аттестата всех выпускников и т. п.



в)Выборкой может быть: – рост 20 студентов, количество глаголов в выбранных произвольно 50 однородных отрывках текста длиной 500 словоупотреблений, средний балл аттестата 100 выпускников, выбранных случайно из школ города и т.п.

Выборка называется репрезентативной, если она верно отражает свойство генеральной совокупности. Репрезентативность выборки достигается случайностью отбора, когда все объекты генеральной совокупности имеют одинаковую вероятность быть отобранными.

Для того чтобы выборка была репрезентативной применяют различные способы отбора объектов изучения.

Виды отбора : простой, механический, серийный, типический.

Простой . Произвольно отбираются элементы из всей генеральной совокупности.

Механический отбор . Выбирают каждый 10 (25, 30 и т.п.) объект из генеральной совокупности.

Серийный . Проводится исследование в каждой серии (например, из текста выбирают 10 отрывков по 500 словоупотреблений- 10 серий).

Типический . Генеральную совокупность по определённому признаку разделяют на типические группы. Количество серий, извлекаемых из каждой такой группы, определяется удельным весом этой группы в генеральной совокупности.

Статистическое распределение выборки и его графическое изображение.

Пусть изучается СВ Х (генеральная совокупность) относительно некоторого признака. Проводится ряд независимых испытаний. В результате опытов СВ Х принимает некоторые значения. Совокупность полученных значений представляет собой выборку, а сами значения являются статистическими данными.

Первоначально проводят ранжирование выборки - расположение статистических данных выборки по неубыванию. Получаем вариационный ряд.

Вариационный ряд - проранжированная выборка.

Дискретный статистический ряд

Если генеральная совокупность является дискретной СВ, строится дискретный статистический ряд (статистическое распределение).

Пусть значение появилось в выборке раз,

Разa , …, - раз.

I-тая варианта выборки; - частота i-той варианты Частота показывает, сколько раз данная варианта появилась в выборке.

- относительная частота i-той варианты

(показывает какую часть выборки составляет ).

Статистическое распределение – это соответствие между вариантами выборки и их частотами или относительными частотами.

Для ДСВ статистическое распределение можно представить в виде таблицы – статистического ряда частот или статистического ряда относительных частот.

Статистический ряд частот Статистический ряд

относительных частот

........
........
........
........

Для наглядности представления статистического распределения выборки строят «графики» статистического распределения: полигон и гистограмму.

Полигон частот (относительных частот) – графическое изображение дискретного статистического ряда - ломаная линия, последовательно соединяющая точки [ для полигона относительных частот].

Пример. Исследователя интересуют знания абитуриентов по математике. Выбирают 10 абитуриентов и записывают их школьные оценки по этому предмету. Получена следующая выборка: 5;4;4;3;2;5;4;3;4;5.

а) Представить выборку в виде вариационного ряда;

б) построить статистический ряд частот и относительных частот;

в) изобразить полигон относительных частот для полученного ряда.

а) Проведем ранжирование выборки, т.е. расположим члены выборки по неубыванию. Получаем вариационный ряд: 2; 3; 3; 4; 4; 4; 4; 5; 5;5.

б) Построим статистический ряд частот (соответствие между вариантами выборки и их частотами) и статистический ряд относительных частот (соответствие между вариантами выборки и их относительными частотами)

0,1 0,2 0,4 0,3

Статистический ряд частот статистический ряд отн. частот

1+2+4+3=10=n 0,1+0,2+0,4+0,3=1.

Полигон относительных частот.


Описание изменений варьирующего признака осуществляется с помощью рядов распределения.

Статистический ряд распределения - это упорядоченное распределение единиц статистической совокупности на отдельные группы по определенному варьирующему признаку.

Статистические ряды, построенные по качественному признаку называют атрибутивными . Если в основе ряда распределения лежит количественный признак, то ряд является вариационным .

В свою очередь вариационные ряды делят на дискретные и интервальные. В основе дискретного ряда распределения лежит дискретный (прерывный) признак, принимающий конкретные числовые значения (число правонарушений, число обращений граждан за юридической помощью). Интервальный ряд распределения строится на основе непрерывного признака, который может принимать любые значения из заданного диапазона (возраст осужденного, срок лишения свободы и т.д.)

Любой статистический ряд распределения содержит два обязательных элемента – варианты ряда и частоты. Варианты (x i ) – отдельные значения признака, которые он принимает в ряду распределения. Частоты (f i ) – это числовые значения, показывающие сколько раз встречаются те или иные варианты в ряду распределения. Сумма всех частот называется объемом совокупности.

Частоты, выраженные в относительных единицах (долях или процентах) называются частостями (w i ). Сумма частостей равна единице, если Частости выражены в долях единицы, или 100, если они выражаются в процентах. Использование частостей позволяет производить сравнение вариационных рядов с разным объемом совокупности. Частости определяются по следующей формуле:

Для построения дискретного ряда ранжируются все встречающиеся в ряду индивидуальные значения признака, а затем подсчитываются частоты повторений каждого значения. Оформляется ряд распределения в идее таблицы, состоящей из двух строк и столбцов, в одной из которых приводятся значения вариантов ряда x i , во второй – значения частот f i .

Рассмотрим пример построения дискретного вариационного ряда.

Пример 3.1 . По данным УМВД зарегистрировано преступлений, совершенных в городе N несовершеннолетними в возрасте.

17 13 15 16 17 15 15 14 16 13 14 17 14 15 15 16 16 15 14 15 15 14 16 16 14 17 16 15 16 15 13 15 15 13 15 14 15 13 17 14.

Построить дискретный ряд распределения.

Решение .

Сначала необходимо проранжировать данные о возрасте несовершеннолетних, т.е. записать их в порядке возрастания.

13 13 13 13 13 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 17 17 17 17 17



Таблица 3.1

Таким образом, частоты отображают количество человек данного возраста, например, 5 человек имеют возраст 13 лет, 8 человек – 14 лет, и т.д.

Построение интервальных рядов распределения осуществляют аналогично выполнению равноинтервальной группировки по количественному признаку, то есть вначале определяют оптимальное число групп, на которые будет разбита совокупность, устанавливаются границы интервалов по группам и подсчитываются частоты.

Проиллюстрируем построение интервального ряда распределения на следующем примере.

Пример 3.2 .

Построить интервальный ряд по следующей статистической совокупности – заработной плате юриста в конторе, тыс. руб.:

16,0 22,2 25,1 24,3 30,5 32,0 17,0 23,0 19,8 27,5 22,0 18,9 31,0 21,5 26,0 27,4

Решение.

Примем оптимальное количество групп равноинтервальной группировки для данной статистической совокупности, равное 4 (у нас 16 вариантов). Следовательно, численность каждой группы равна:

а величина каждого интервала будет равна:

Границы интервалов определяем по формулам:

,

где - соответственно нижняя и верхняя границы i-го интервала.

Опуская промежуточные вычисления границ интервалов, заносим их значения (варианты) и количество юристов (частоты), имеющих з/п в пределах каждого интервала, в таблицу 3.2, которая и иллюстрирует полученный интервальный ряд.

Таблица 3.2

Анализ статистических рядов распределения может производиться с использованием графического метода. Графическое представление рядов распределения позволяет наглядно проиллюстрировать закономерности распределения исследуемой совокупности путем ее изображения в виде полигона, гистограммы и кумуляты. Остановимся на каждом из перечисленных графиков.

Полигон – ломаная, отрезки которой соединяют точки с координатами (x i ;f i ). Обычно полигон используют для изображения дискретных рядов распределения. Для его построения на оси абсцисс откладывают ранжированные индивидуальные значения признака x i , на оси ординат – соответствующие этим значениям частоты. В результате, соединив отрезками точки, соответствующие данным, отмеченным по осям абсцисс и ординат, получают ломаную, называемую полигоном. Приведем пример построения полигона частот.

Для иллюстрации построения полигона возьмем результат решения примера 3.1 на построение дискретного ряда – рисунок 1. По оси абсцисс отложен возраст осужденных, по оси ординат – количество несовершеннолетних осужденных, имеющих данный возраст. Анализируя данный полигон, можно сказать, что наибольшее количество осужденных – 14 человек, имеют возраст 15 лет.

Рисунок 3.1 – Полигон частот дискретного ряда.

Полигон можно построить и для интервального ряда, в этом случае по оси абсцисс откладывают середины интервалов, а по оси ординат – соответствующие им частоты.

Гистограмма – ступенчатая фигура, состоящая из прямоугольников, основаниями которых служат интервалы значения признака, а высоты равны соответствующим частотам. Гистограмма применяется только для изображения интервальных рядов распределения. Если интервалы являются неравными, то для построения гистограммы на оси ординат откладывают не частоты, а отношение частоты к ширине соответствующего интервала. Гистограмму можно преобразовать в полигон распределения, если середины ее столбиков соединить между собой отрезками.

Для иллюстрации построения гистограммы возьмем результаты построения интервального ряда из примера 3.2– рисунок 3.2.

Рисунок 3.2 – Гистограмма распределения заработной платы юристов.

Для графического изображения вариационных рядов также используют кумуляту. Кумулята – кривая, изображающая ряд накопленных частот и соединяющая точки с координатами (x i ;f i нак ). Накопленные частоты вычисляются последовательным суммированием всех частот ряда распределения и показывают число единиц совокупности, имеющих значение признака не больше, чем указанное. Проиллюстрируем вычисление накопленных частот для вариационного интервального ряда, представленного в примере 3.2 – таблица 3.3.

Таблица 3.3

Для построения кумуляты дискретного ряда распределения по оси абсцисс откладывают ранжированные индивидуальные значения признака, а по оси ординат – соответствующие им накопленные частоты. При построении кумулятивной кривой интервального ряда первая точка будет иметь абсциссу, равную нижней границе первого интервала, а ординату, равную 0. Все последующие точки должны соответствовать верхним граница интервалов. Построим кумуляту, используя данные таблицы 3.3 – рисунок 3.3.

Рисунок 3.3 – Кумулятивная кривая распределения заработной платы юристов.

Контрольные вопросы

1. Понятие статистического ряда распределения, его основные элементы.

2. Виды статистических рядов распределения. Их краткая характеристика.

3. Дискретные и интервальные ряды распределения.

4. Методика построения дискретных рядов распределения.

5. Методика построения интервальных рядов распределения.

6. Графическое изображение дискретных рядов распределения.

7. Графическое изображение интервальных рядов распределения.

Задачи

Задача 1 . Имеются следующие данные об успеваемости 25 студен­тов группы по ТГП в сессию: 5, 4, 4, 4, 3, 2, 5, 3, 4, 4, 4, 3, 2, 5, 2, 5, 5, 2, 3, 3, 5, 4, 2, 3, 3. Постройте дискретный вариационный ряд распределения студентов по баллам оценок, получен­ных в сессию. Для полученного ряда рассчитайте Частости, накопленные Частости, накопленные частоты. Сделайте выводы.

Задача 2 . В колонии содержатся 1000 осужденных, их распределение по возрасту представлено в таблице:

Изобразите данный ряд графически. Сделайте выводы.

Задача 3 . Имеются следующие данные о сроках лишения свободы заключенных:

5; 4; 2; 1; 6; 3; 4; 3; 2; 2; 3; 1; 17; 6; 2; 8; 5; 11; 9; 3; 5; 6; 4; 3; 10; 5; 25; 1; 12; 3; 3; 4; 9; 6; 5; 3; 4; 3; 5; 12; 4; 13; 2; 4; 6; 4; 14; 3; 11; 5; 4; 13; 2; 4; 6; 4; 14; 3; 11; 5; 4; 3; 12; 6.

Постройте интервальный ряд распределения заключенных по срокам лишения свободы. Сделайте выводы.

Задача 4 . Имеются следующие данные о распределении осужденных в области за изучаемый период по возрастным группам:

Изобразите данный ряд графически, сделайте выводы.