Условия воспламенения горючих газов. При каких условиях происходит взрывоопасное горение газов

ПРЕИМУЩЕСТВА: Отсутствие золы, шлака, выброса твердых частиц в атмосферу, меньше токсичных выбросов, высокая теплота сгорания, удобство транспортировки и сгорания, облегчение труда обслуживающего персонала котельной, большое КПД, улучшение санитарно – гигиенической обстановки в котельной и вокруг нее.

НЕДОСТАТКИ: Взрывоопасность смеси, способность оказывать наркотическое и удушающее действие на человека, способность вытекать через неплотности в соединениях, при неполном сгорании образуется угарный газ.

2 Способы обнаружения утечек газа

А) Визуальный – по внешним признакам:

Запах – газ одорирован

Вспенивание мыльной эмульсии

Звук – на среднем и высоком давлении газ выходит с шипением

Наледь или снежная шуба

Желтая трава летом и бурый снег зимой – при утечке из подземных резервуаров

Пузырьки на поверхности водоемов, которые при поджигании горят

Б) Приборный:

Газоанализаторы – это приборы, определяющие концентрацию определенного газа.

Газоиндикаторы – это приборы, констатирующие факт загазованности и реагируют на любой газ.

Течеискатели

Датчики загазованности

Высокочувствительные газоиндикаторы

Все приборы должны подвергаться государственной поверке каждые 6 месяцев.

Определять утечку газа открытым огнем категорически ЗАПРЕЩАЕТСЯ!!!

5 Оказание первой помощи пострадавшему от удушья природным газом

Вынести пострадавшего на свежий воздух

В случае отсутствия сознания и пульса на сонной артерии – приступить к комплексу реанимации

С влучае потери сознания более 4 минут – перевернуть на живот и приложить холод к голове

Во всех случаях вызвать скорую помощь

Билет №2

1 Физико-химические свойства природного газа

Природный газ не имеет цвета, запаха, вкуса, для запаха добавляют одорант 16 грамм на 1000м 3 .

Природный газ состоит из: метан СН 4 - 96-98%., пропан С 3 Н 8 – 1-3%, бутан С 4 Н 10 – 1-3%

Природный газ по сравнению с другими видами топлива имеет ПРЕИМУЩЕСТВА: Отсутствие золы, шлака, выброса твердых частиц в атмосферу, меньше токсичных выбросов, высокая теплота сгорания, удобство транспортировки и сгорания, облегчение труда обслуживающего персонала котельной, большое КПД, улучшение санитарно – гигиенической обстановки в котельной и вокруг нее.

2 Типы соединений газопроводов

Сварные соединения относятся к числу ответственных элементов сооружения и требуют контроля. Проверка должна осуществляться строительно-монтажной организацией и контролироваться техническим надзором заказчика и предприятием газового хозяйства.

Разборные соединения следует устанавливать в местах, доступных для осмотра, а так же для монтажных и ремонтных работ. Вся газопроводная система линий располагается в лотках, перекрытых съемными, не дающими искр щитами.

Фланцевые соединения газопроводов с аппаратами, компенсаторами и др, должны иметь точеную поверхность с уплотняющими рискам для прокладок.

Все соединения стальных труб газопроводов следует выполнять с помощью сварки. Резьбовые и фланцевые соединения могут применяться только в местах установки запорной арматуры, контрольно – измерительных приборов, регуляторов давления и др оборудования. Эти соединения газопроводов должны быть доступны для осмотра и производства ремонтов. Все газовые приборы и газогорелочные устройства следует присоединять к газопроводам жествим соединением.

Условия воспламенения и горения газа
Горение газообразного топлива представляет собой сочетание следующих физических и химических процессов: смешение горючего газа с воздухом, подогрев смеси, термическое разложение горючих компонентов, воспламенение и химическое соединение горючих элементов с кислородом воздуха, сопровождаемое образованием факела (пламени) с интенсивным тепловыделением.
Устойчивое горение газовоздушной смеси возможно при непрерывном подводе к фронту горения необходимых количеств горючего газа и воздуха, их тщательном перемешивании и нагреве до температуры самовоспламенения.
Воспламенение газовоздушной смеси может быть осуществлено:
нагревом всего объема газовоздушной смеси до температуры самовоспламенения. В этом случае газовоздушная смесь воспламеняется и горит без постороннего источника зажигания. Такой способ применяют в двигателях внутреннего сгорания, где газовоздушную смесь нагревают быстрым сжатием до определенного давления;
применением посторонних источников зажигания (высоконагретых тел, запальников и т.д.). В этом случае до температуры воспламенения нагревается не вся газовоздушная смесь, а часть ее. Данный способ применяется при сжигании газов в горелках газовых приборов.
Для начала реакции горения газообразного топлива следует затратить определенное количество энергии, необходимой для разрыва молекулярных связей и создания новых.
Молекулы газа и воздуха находится в постоянном хаотическом движении, сопровождающемся столкновениями. Кинетическая энергия молекул пропорциональна абсолютной температуре газов. Энергия столкновения возрастает с повышением абсолютной температуры.
При температуре воспламенения сила удара такой молекулы о встречную так велика, что связи между атомами не выдерживают и молекула распадается на атомы. При соединении горючих (углерод, водород) атомов с кислородом выделяется дополнительная энергия, температура молекул повышается и процесс горения приобретает цепной характер со все возрастающей скоростью до полного соединения кислорода с горючими компонентами газа.
Не всякую холодную газовоздушную смесь можно поджечь внешним источником зажигания. Чтобы смесь воспламенилась и продолжала сгорать, нужны определенные соотношения объемов сжигаемого газа и подаваемого воздуха. Если газа в газовоздушной смеси мало, а воздуха много, то смесь гореть самостоятельно не может. Горение такой смеси через определенное время прекратится, так как выделяющейся теплоты будет недостаточно для нагрева газовоздушной смеси до температуры воспламенения. Если в смеси недостаточно воздуха, то при воспламенении может сгореть ограниченное количество газа и выделяемой химической энергии будет недостаточно для поддержания температуры не ниже температуры воспламенения газовоздушной смеси.
Итак, для процесса горения газовоздушной смеси необходимо, чтобы количество газа и воздуха в газовоздушной смеси было в определенных пределах. Эти пределы называются пределами воспламеняемости или пределами взрываемости. Различают нижний и верхний пределы воспламеняемости. Минимальное содержание газа в газовоздушной смеси, выраженное в объемных процентах, при котором происходит воспламенение, называется нижним пределом воспламеняемости. Максимальное содержание газа в газовоздушной смеси, выше которого смесь не воспламеняется без подвода дополнительной теплоты, называется верхним пределом воспламеняемости.
Газовоздушная смесь, в которой содержание газа больше верхнего предела воспламеняемости, может гореть при подогреве газовоздушной смеси. Если смесь будет подогреваться, то пределы воспламеняемости расширяются за счет снижения нижнего предела воспламеняемости и повышения верхнего. Если газовоздушную смесь нагреть до температуры ее воспламенения, то она воспламенится и будет гореть при любом соотношении газа и воздуха.
Если в газовоздушной смеси содержится газа меньше нижнего предела воспламеняемости, то она не будет гореть. Если в газовоздушной смеси недостаточно воздуха, то горение протекает не полностью.
Значения пределов воспламеняемости зависят также от давления газовоздушной смеси. При повышении давления диапазон между нижним и верхним пределами воспламеняемости расширяется.
Большое влияние на величины пределов взрываемости оказывают инертные примеси в газах. Увеличение содержания в газе балласта (N2 и CO2) сужают пределы воспламеняемости, а при повышении содержания балласта выше определенных пределов газовоздушная смесь не воспламеняется при любых соотношениях газа и воздуха.

Под взрывом понимают явление, связанное с выделением большого количества энергии в ограниченном объёме за очень короткий промежуток времени. И если в сосуде воспламенилась горючая газовая смесь, но сосуд выдержал образовавшееся вследствие этого давление, то - это не взрыв, а простое сгорание газов. Если же сосуд разорвался - это взрыв.

Более того - взрыв, даже если в сосуде не было горючей смеси, а он разорвался, например, вследствие превышения давления воздуха или даже без превышения расчетного давления, или например вследствие потери прочности сосуда в результате коррозии его стенок.

Если представить шкалу загазованности какого-либо объёма (помещения, сосуда и т.д.) в объёмных процентах от 0% до 100%, то получится, что при загазованности СН4:

От 0% до 1% - горение невозможно, так как газа, по отношению к воздуху, слишком мало;

От 1% до 5% - горение возможно, но не устойчиво (концентрация газа небольшая);

От 5% до 15% (1 вариант) - горение возможно от источника зажигания, и (2 вариант) – горение возможно без источника зажигания (нагрев газовоздушной смеси до температуры самовоспламенения);

От 15% до 100% - горение возможно, и устойчиво.

Сам процесс горения может происходить двумя способами:

От источника зажигания - в данном случае газовоздушная смесь воспламеняется в «точке вноса» источника зажигания. Далее по цепной реакции, газовоздушная смесь поджигает сама себя, образуя «фронт распространения пламени», с направлением движения от источника зажигания;

Без источника зажигания – в данном случае газовоздушная смесь воспламеняется одновременно (мгновенно) во всех точках загазованного объёма. Отсюда произошли такие понятия как нижний и верхний концентрационные пределы взрываемости газа, так как такое воспламенение (взрыв) возможно только в пределах загазованности от 5% до 15% объёмных.

Условия, при выполнении которых произойдёт взрыв газа:

Концентрация газа (загазованность) в газовоздушной смеси от 5% до 15%;

Закрытый объём;

Внесение открытого огня или предмета с температурой воспламенения газа (нагрев газовоздушной смеси до температуры самовоспламенения);

Нижний концентрационный предел самовоспламенения горючих газов (НКПР) - это минимальное содержание газа в газовоздушной смеси, при котором горение происходит без источника зажигания (самопроизвольно). При условии подогрева газовоздушной смеси до температуры самовоспламенения. У метана это примерно 5%, а у пропано-бутановой смеси это примерно 2% газа от объёма помещения.

Верхний концентрационный предел самовоспламенения горючих газов (ВКПР) - это такое содержание газа в газовоздушной смеси, выше которого смесь становится негорючей без открытого источника зажигания. У метана это примерно 15%, а у пропано-бутановой смеси примерно 9% газа от объёма помещения.

Процентное отношение НКПР и ВКПР указано при нормальных условиях (Т = 0°С и Р = 101325 Па).

Сигнальная норма - это 1/5 от НКПР. У метана это 1%, а у пропано-бутановой смеси это 0,4% газа от объёма помещения. Все газосигнализаторы, газоанализаторы и газоиндикаторы до взрывных концентраций настроены на эту сигнальную норму. При обнаружении сигнальной нормы (согласно ПЛА) объявляется АВАРИЯ-ГАЗ. Производятся соответствующие мероприятия. 20% от НКПР берётся для того, чтобы у работников был некоторый запас времени на устранение аварии, либо на эвакуацию. Также указанная сигнальная норма является «точкой» окончания продувки газопроводов газом или воздухом, после проведения различных эксплуатационных работ.

При каких условиях происходит взрывоопасное горение газов

Горение и взрывы газо-, паро- и пылевоздушных смесей.

Смеси газов или паров с воздухом могут гореть лишь при определенных соотношениях. Минимальную и максимальную концентрации горючих газов или паров в воздухе, при которых они могут воспламеняться, называют нижним и верхним концентрационными пределами воспламенения. Концентрации смесей, находящиеся в этих пределах и способные гореть, называются взрывоопасными.

При горении смесей в условиях замкнутых емкостей возникает повышенное давление, приводящее к взрыву. Так, при испарении 0,25 кг бензина в воздухе образуется газовая смесь, взрыв Которой развивает мощность, достигающую 12 тыс. кВт. Этим объясняется, что взрывы вызывают разрушения, пожары и тяжелые формы травматизма (сотрясение мозга, переломы костей, ранения).

Взрывоопасными считают вещества, способные к взрыву или детонации без участия кислорода, воздуха.

Смеси, концентрации которых находятся ниже нижнего и выше верхнего пределов воспламенения, в замкнутых сосудах не горят и поэтому являются безопасными.

Концентрационные пределы воспламенения паров и газов некоторых веществ следующие, %: для паров ацетилена нижний предел -- 2,5, верхний--80,8; для бутана нижний -- 1,36, верхний -- 8,41, для бензина нижний -- 0,76, верхний -- 5,4.

Пламя по взрывчатой смеси в открытой трубе распространяется со скоростью всего нескольких метров в 1 с, тогда как в закрытой трубе -- со скоростью 2000--3000 м/с. При такой скорости сгорание смеси называется детонацией.

При взрыве большинства газов образуется температура в 1500...2000°С и давление до 1,1 МПа (11 ат).

Смеси паров с воздухом по взрывоопасности аналогичны смесям газов с воздухом. Учитывая, что концентрация насыщенных паров жидкости зависит от температуры, эти температуры принято называть нижним и верхним температурными пределами воспламенения

Смеси пыли с воздухом, как и газовые смеси, горят с большой скоростью и взрываются в замкнутых сосудах.

В воздухе пыль находится в состоянии аэрозоля (взвешенной воздухе) или аэрогеля (пыль, осевшая на потолке и поверхностях).

Температура самовоспламенения угольной пыли в состоянии аэрогеля 260°С, в состоянии аэрозоля --969°С.

Опасность пылей характеризуется нижним концентрационным пределом их воспламенения. Пыли, у которых этот предел составляет 65 г/м3 и менее, относят к взрывоопасным, а у которых он выше 65 г/м3 -- к пожароопасным.

Для предотвращения развития взрыва пылевоздушных смесей и уменьшения разрешающего действия такого взрыва на пылепроводах и аппаратах (дюкерах, мельницах, сепараторах) устанавливают разрывные мембраны, быстродействующие отсекающие задвижки, а также устройства для подачи в пылепроводы инертных газов (двуокиси углерода или водяного пара).

Опасность взрыва аэровзвесей определяется нижним пределом воспламенения, периодом индукции и температурой самовоспламенения; способностью к самовозгоранию.

Категории взрывоопасных смесей газов и паров с воздухом, а также группы взрывоопасных смесей газов и паров с воздухом по температуре самовоспламенения изложены в ГОСТ 12.1.011--78 “Смеси взрывоопасные”.

Горение в замкнутом объеме.

Особенностью сгорания смеси в замкнутом объеме (при центральном зажигании) является слабый рост давления в начальной стадии распространения пламени. Причиной этого является то, что объем сгоревшего газа пропорционален кубу радиуса пламенной сферы и поэтому относительно невелик при незначительных перемещениях фронта пламени в начале его пути. Так, при отношении радиусов пламенной сферы и сферического сосуда: r: R = 1: 3 -- объем продуктов сгорания равен 1/27 объема сосуда. Если бы исходная смесь не сгорала в этом объеме, а лишь оттеснялась на периферию, то давление возрастало бы не более, чем на 40%.

В соответствии с характером движения газов при сгорании в замкнутом объеме изменяется и скорость перемещения пламени. В начальной стадии горение протекает как бы в условиях свободного расширения газа в неограниченном пространстве. В конце горения скорость пламени приближается к нормальной.

Если в помещении имеются разгерметизированные отверстия (проемы), через которые могут выходить продукты сгорания, то давление взрыва снижается и при достаточной площади проемов может находиться в пределах 10--20 кПа.

Распространение пламени сопровождается многими сложными процессами: теплопередачей, диффузией, химическими превращениями. Эти процессы определяют скорость пламени Uи и структуру зоны горения.

Детонационное горение

Детонационное горение возникает во взрывоопасной среде при прохождении по ней достаточно сильной ударной волны (или волны ударного сжатия). Например, если в замкнутом объеме с горючей газовоздушной смесью взорвать точечный заряд взрывчатого вещества, то по газовой смеси от точки расположения заряда начнет распространяться ударная волна, и которой происходит внезапное (скачкообразное) повышение параметров состояния газа. -- давления, температуры, плотности. Повышение температуры газа при сжатии в ударной волне значительно больше, чем при аналогичном, сравнительно медленном адиабатическом сжатии. Абсолютная температура газа, сжатого ударной волной, пропорциональна давлению ударной волны. Следовательно, если ударная волна достаточно сильная, то температура газа под действием ударного сжатия может повыситься до температуры самовоспламенения. Так как смесь реакционноспособна, произойдет химическая реакция. Выделившееся тепло пойдет частично на энергетическое развитие и усиление ударной волны, поэтому она будет перемещаться по смеси не ослабевая. Этот комплекс, представляющий собой ударную волну и зону химической реакции, называют детонационной волной, а само явление -- детонацией. Так как химическая реакция при детонации протекает по тому же уравнению, что и при самовоспламенении, определяющим процесс горения, то детонацию можно считать детонационным горением.

Сжатие газа и его нагревание ударной волной тем сильнее, чем больше скорость движения расширяющихся газов, определяемая, в свою очередь, скоростью горения.

Давление в детонационной волне в несколько раз выше давления адиабатического сгорания в жесткой бомбе. При встрече с препятствием -- стенкой сосуда -- давление в детонационной волне возрастает. В определенных условиях давление в отраженной детонационной волне может в несколько сот раз превосходить начальное (до сгорания). Поэтому детонационное горение, вызывающее сильные разрушения, представляет собой большую опасность при образовании горючих газовых систем.

Детонация газовых смесей может происходить только при определенном минимально необходимом начальном давлении и определенных концентрациях горючего вещества в воздухе (или кислороде).

Какое влияние на величину предела огнестойкости железобетонных конструкций оказывает влажность бетона