Расчетное сопротивление грунта песок мелкий. Измерение удельного сопротивления грунта

Основной величиной, которая вводится в расчет заземления и от которой зависят конструкции заземления, является удельное сопротивление грунта. Этот важнейший параметр, говорит об уровне "электропроводности" земли в роли проводника, то есть как хорошо будет идти в этой среде электрический ток от заземлителя.


Грунт – это пористое дисперсионное тело , состоящее из трех основных частей: твердой , жидкой (свободная и связанная вода) и газообразной . Структура грунта схематически показана на рисунке ниже.

1 – твердые частицы, 2 – связанная вода, 3 – свободная вода, 4 – газообразная составляющая

Земля – достаточно плохой проводник, ее проводимость в тысячи раз ниже, проводимости воды или металлов. Удельное сопротивление грунта – это физическая величина, характеризующая сопротивление грунта протеканию электрического тока, простыми словами – этим параметром мы делаем выводы о электропроводности грунта в качестве проводника при прокладке заземления.


– это сопротивление, оказоваемое различными веществами земли (грунта) в виде куба с размерами 1×1×1 метр, к которому подключены измерительные электроды к противоположным сторона куба. За физическую единицу объемного удельного сопротивления считают Ом на метр (международное обозначение Омм ).

Значение удельного сопротивления грунта это исходный и главный физический параметр для осуществления расчетов сопротивления заземления. Чем выше это значение, тем больше заземлителей потребуется, чтобы добиться требуемого значения сопротивления заземления. При расчете любого заземляющего устройства необходимо знать точное значение этого араметра в конкретном месте, где будем подключать заземление.

Данный параметр грунта зависит от большого числа внешних факторов: температуры, влажности, состава, структуры и уплотненности грунта, времени года, присутствия солей, щелочных и кислотных остатков.

На основе различных геодезических исследований, проводимых в верхних слоях грунта, можно сделать вывод о том, что электрическая составляющая структуры земли носит выраженный вид слоев, которые имеют совершенно различное сопротивление с достаточно определенными горизонтальными границами. Причем удельное сопротивление в горизонтальном направлении практически одинаковое и изменяется несущественно. При этом верхний слой земли подвергается интенсивным сезонным изменениям, из-за сильных температурных колебаний, а так же от количества попадающей в почву влаги. Другие факторы, влияют менее выражено. Наибольшее значение удельного сопротивления наблюдается в зимнее время года , когда грунт промерзает, и летом – при высыхании последнего. Самым высоким значением обладают как раз на вечномерзлые грунты в зоне мерзлоты. У воды в переходном состоянии из жидкого в твердое практически не идут процессы передачи заряда. На рисунке ниже представлен график зависимости удельного сопротивления грунта от значения температуры, на котором все выше сказанное, очень хорошо видно:


Характерно, что при снижении окружающей температуры всего до -5° Цельсия, значение удельного сопротивления увеличивается в 8 раз. Не менее важное значение, при расчетах заземления имеет и уровень влажности – при его даже незначительном падении у некоторых типов грунтов (пески, глина и суглинок) удельное сопротивление увеличивается в разы. Примеры этого, как раз, приводится в таблице ниже.



Точное и правильное измерение удельного сопротивления грунта позволяет существенно снизить затраты при монтаже заземления. Так, нет необходимости устанавливать лишние заземлители. Для получения правильного результата измерения необходимо осуществлять в течение всего года, как минимум по разу в течение каждого временного сезона. Гораздо чаще все замеры проводят в конце весны – начала лета, возможное увеличение сопротивления учитывают, вводя различные повышающие коэффициенты, смотри таблицу ниже.


Для измерения можно использовать прибор МС-08 или его аналоги. В основу работы положен принцип магнитоэлектрического логометра. В приборе имеются две рамки – одна подсоединена как вольтметр, вторая – амперметр. Эти обмотки, при одномоментном включении, создают на ось измерительного прибора воздействия, имеющие прямо противоположные направления. В результате этого противодействия – отклонение стрелки прибора будет прямо пропорционально значению сопротивления. Шкала измерительного устройства проградуирована в омах. В МС-08 источником напряжения при проведении измерений выступает генератор (Г) постоянного тока, который приводится в движение за счет вращения ручкой. Также имеется выпрямитель (Вп) и прерыватель (П).

При включение питания на крайние электроды между средними появится разность напряжений U . Для однородного грунта значение U будет прямо пропорционально току I и удельному сопротивлению ρ и обратно пропорционально расстоянию между электродами а .

откуда следует, что удельное сопротивление определяется так:

ρ = 2πaU/I . или из соотношений ρ = 2πaR

Чем выше расстояние между электродами, тем больший объем земли охватывается , генерируемым токовыми электродами. Изменяя значение а можно увидеть зависимость значения удельного сопротивления грунта от этого параметра. Для однородной земли значение ρ будет практически везде одинаковым.


Для увеличения точности проводимых измерений важно грамотно расположить на поверхности грунта измерительные щупы. При этом следует соблюдать следующие принципы :
Щтыри нужно хорошо почистить от грязи, оставшейся от предыдущих измерений. Засохшая грязь сильно увеличивает полученное значение
Щупы монтируются в землю строго вертикально по прямой линии, на равном расстоянии друг от друга
Растояние между измерительными щупами должно быть минимум в пять раз больше, чем глубина, на которую забиты щупы
Измерительные щупы желательно вдавливать или забивать в грунт – это даст хороший контакт с землей. Вкручивать стержни не советую – при этом между электродом и землей появляется воздушная прослойка, вносящая погрешность в результат измерений

Измерения необходимо осуществлять в отдалении от металлоконструкций и трубопроводов, которые могут влиять на погрешность и точность.

Приблизительное значение удельного сопротивления можно вычислить с помощью метода пробного электрода. В нем измерительный электрод погружают вертикально в грунт, чтобы над землей оставалось всего 60-70 см, после чего с помощью прибора МС-08 осуществляют замер сопротивления электрода. После чего делают коррекцию полученных данных, используя приближенные значения сопротивления вертикальных значений (смотри таблицу ниже), в результате находя приближенное значение. Измерение лучше всего проводить в двух-трех местах и за рабочее значение принять среднее значение.

Страница 3 из 4

8-8. РАСЧЕТ ЗАЗЕМЛЯЮЩИХ УСТРОЙСТВ

Расчет заземляющих устройств сводится главным образом к расчету собственно заземлителя, так как заземляющие проводники в большинстве случаев принимаются по условиям механической прочности и стойкости к коррозии по ПТЭ и ПУЭ. Исключение составляют лишь установки с выносным заземляющим устройством. В этих случаях рассчитываются последовательно включаемые сопротивления соединительной линии и заземлителя, так, чтобы их суммарное сопротивление не превышало допустимого.
Следует особо выделить вопросы расчета заземляющих устройств для заполярных и северо-восточных районов нашей страны. Для них характерны многомерзлые грунты, имеющие удельное сопротивление поверхностных слоев на один - два порядка выше, чем в обычных условиях средней полосы СССР.
Расчет сопротивления заземлителей в других районах СССР производится в следующем порядке:
1. Устанавливается необходимое по ПУЭ допустимое сопротивление заземляющего устройства r зм. Если заземляющее устройство является общим для нескольких электроустановок, то расчетным сопротивлением заземляющего устройства является наименьшее из требуемых.
2. Определяется необходимое сопротивление искусственного заземлителя с учетом использования естественных заземлителей, включенных параллельно,из выражений

Или
(8-14)
где r зм -допустимое сопротивление заземляющего устройства по п. 1, R и-сопротивление искусственного заземлителя; R е-сопротивление естественного заземлителя. Определяется расчетное удельное сопротивление грунта расч с учетом повышающих коэффициентов, учитывающих высыхание грунта летом и промерзание зимой.
При отсутствии точных данных о грунте можно воспользоваться табл. 8-1, где приведены средние данные по сопротивлениям грунтов, рекомендуемые для предварительных расчетов.
Таблица 8-1

Средние удельные сопротивления грунтов и вод, рекомендуемые для предварительных расчетов


Грунт

Удельное
сопротивление
, Ом

Грунт

Удельное
сопротивление
, Ом

Суглинок

Земля садовая

Известняк

Чернозем

Вода:
- грунтовая
- морская
- прудовая
- речная

50
3
50
100

Песок крупнозернистый с валунами

Примечание. Удельные сопротивления грунтов определены при влажности 10-20% к массе грунта

Измерение удельного сопротивления для получения более надежных результатов производят в теплое время года (май - октябрь) в средней полосе СССР. К измеренному значению удельного сопротивления грунта в зависимости от состояния грунта и от количества осадков вводятся поправочные коэффициенты к , учитывающие изменение вследствие высыхания и промерзания грунта, т. е. расч = к
Значения к , рекомендованные ВЭИ для средней полосы СССР, приведены в табл. 8-8; для других климатических зон они принимаются по данным табл. 8-2.
4. Определяется сопротивление растеканию одного вертикального электрода R в.о. формулам табл. 8-3. Эти формулы даны для стержневых электродов из круглой стали или труб.
При применении вертикальных электродов из угловой стали в формулу вместо диаметра трубы подставляется эквивалентный диаметр уголка, вычисленный по выражению
(8-15)

Где b - ширина сторон уголка.
(8-16)

Где R в.о. - сопротивление растеканию одного вертикального электрода, определенное в п. 4; R и - необходимое сопротивление искусственного заземлителя; К и,в,зм - коэффициент использования вертикальных заземлителей.
Таблица 8-2

Значение повышающего коэффициента к для различных климатических зон


Данные, характеризующие климатические зоны и тип применяемых электродов

Климатические зоны СССР

1. Климатические признаки зон :

Средняя многолетняя низшая температура (январь), С

от - 20
до - 15

от - 14
до - 10

от - 10
до 0

от 0
до + 5

Средняя многолетняя низшая температура (июль), С

от +16
до +18

от +18
до +22

от +22
до +24

от +24
до +26

Среднегодовое количество осадков, см

Продолжительность замерзания вод, дни

2. Значение коэффициента к :

При применении стержневых электродов длиной 2 - 3 м и при глубине заложения их вершины 0,5 - 0,8 м

При применении протяженных электродов и при глубине заложения 0,8 м

Коэффициенты использования вертикальных заземлителей даны в табл. 8-4 при расположении их в ряд и в табл. 8-5 при размещении их по контуру
6. Определяется сопротивление растеканию горизонтальных электродов R г по формулам табл. 8-3. Коэффициенты использования горизонтальных электродов для предварительно принятого числа вертикальных электродов принимаются по табл. 8-6 при расположении вертикальных электродов в ряд и по табл. 8-7 при расположении вертикальных электродов по контуру.
7. Уточняется необходимое сопротивление вертикальных электродов с учетом проводимости горизонтальных соединительных электродов из выражений
(8-17)

или

Где R г - сопротивление растеканию горизонтальных электродов, определенное в п.6; R и - необходимое сопротивление искусственного заземлителя.

Таблица 8-3

Формулы для определения сопротивления растеканию тока различных заземлителей

К и,в,зм,

4
6
10
20
40
60
100

0,66-0,72
0,58-0,65
0,52-0,58
0,44-0,50
0,38-0,44
0,36-0,42
0,33-0,39

4
6
10
20
40
60
100

0,76-0,80
0,71-0,75
0,66-0,71
0,61-0,66
0,55-0,61
0,52-0,58
0,49-0,55

4
6
10
20
40
60
100

0,84-0,86
0,78-0,82
0,74-0,78
0,68-0,73
0,64-0,69
0,62-0,67
0,59-0,65

Отношение расстояний между вертикальными электродами к их длине

Число вертикальных электродов

К и,в,зм,

2
3
5
10
15
20

0,84-0,87
0,76-0,80
0,67-0,72
0,56-0,62
0,51-0,56
0,47-0,50

2
3
5
10
15
20

0,90-0,92
0,85-0,88
0,79-0,83
0,72-0,77
0,66-0,73
0,65-0,70

2
3
5
10
15
20

0,93-0,95
0,90-0,92
0,85-0,88
0,79-0,83
0,76-0,80
0,74-0,79

Таблица 8-6

Коэффициенты использования К и,г,зм горизонтальных соединительных электродов,
в ряду из вертикальных электродов

Таблица 8-7

Коэффициенты использования К и,г,зм вертикальных соединительных электродов
в контуре из вертикальных электродов

Отношение расстояний между вертикальными электродами к их длине

Число вертикальных электродов в контуре

8. Уточняется число вертикальных электродов с учетом коэффициентов использования по табл. 8-4 и 8-5:

Окончательно принимается число вертикальных электродов из условий размещения.
9. Для установок выше 1000 В с большими токами замыкания на землю проверяется термическая стойкость соединительных проводников по формуле (8-11).

Пример 1 . Требуется рассчитать контурный заземлитель подстанции 110/10 кВ со следующими данными: наибольший ток через заземление при замыканиях на землю на стороне 110 кВ - 3,2 кА, наибольший ток через заземление при замыканиях на землю на стороне 10 кВ - 42 А; грунт в месте сооружения подстанции - суглинок; климатическая зона 2; дополнительно в качестве заземления используется система тросы - опоры с сопротивлением заземления 1,2 Ом.
Решение 1. Для стороны 110 кВ требуется сопротивление заземления 0,5 Ом, Для стороны 10 кВ по формуле (8-12) имеем:

где расчетное напряжение на заземляющем устройстве U расч принято равным 125 В, так как заземляющее устройство используется также и для установок подстанции напряжением до 1000 В.
Таким образом, в качестве расчетного принимается сопротивление r зм = 0,5 Ом.
2.Сопротивление искусственного заземлителя рассчитывается с учетом использования системы тросы-опоры

3. Рекомендуемое для предварительных расчетов удельное сопротивление грунта в месте сооружения заземлителя (суглинка) по табл. 8-1 составляет 1000 Ом м. Повышающие коэффициенты к для горизонтальных протяженных электродов при глубине заложения 0,8 м равны 4,5 и соответственно 1,8 для вертикальных стержневых электродов длиной 2 - 3 м при глубине заложения их вершины 0,5 - 0,8 м.
Расчетные удельные сопротивления: для горизонтальных электродов расч.г = 4,5х100 = 450 Ом м; для вертикальных электродов расч.в= 1,8х100 = 180 Ом м.
4. Определяется сопротивление растеканию одного вертикального электрода - уголка № 50 длиной 2,5 м при погружении ниже уровня земли на 0,7 м по формуле из табл. 8-3:

Где d = d y,эд= 0,95; b = 0,95x0,95 = 0,0475 м; t =0,7 + 2,5/2 = 1,95 м;


5. Определяется примерное число вертикальных заземлителей при предварительно принятом коэффициенте использования К и,в,зм = 0,6:

6. Определяется сопротивление растеканию горизонтальных электродов (полосы 40х4 мм 2), приваренных к верхним концам уголков. Коэффициент использования соединительной полосы в контуре К и,г,зм при числе уголков примерно 100 и отношении a/l = 2 по табл. 8-7 равен 0,24.
Сопротивление растеканию полосы по периметру контура (l = 500 м) по формуле из табл. 8-3 равно:


7. Уточненное сопротивление вертикальных электродов


К и, г, зм = 0,52, принятом из табл. 8-5 при n = 100 и a/l = 2:

Окончательно принимается 116 уголков.
Дополнительно к контуру на территории устраивается сетка из продольных полос, расположенных на расстоянии 0,8-1 м от оборудования, с поперечными связями через каждые 6 м. Дополнительно для выравнивания потенциалов у входов и въездов, а также по краям контура прокладываются углубленные полосы. Эти неучтенные горизонтальные электроды уменьшают общее сопротивление заземления, проводимость их идет в запас надежности.
9. Проверяется термическая стойкость полосы 40 × 4 мм 2 .
Минимальное сечение полосы из условий термической стойкости при к. з. на землю в формуле (8-11) при приведенном времени протекания тока к. з. t п = 1,1 равно:

Таким образом, полоса 40 × 4 мм 2 условию термической стойкости удовлетворяет.

Пример 2. Требуется рассчитать заземление подстанции с двумя трансформаторами 6/0,4 кВ мощностью 400 кВА со следующими данными: наибольший ток через заземление при замыкании на землю на стороне 6 кВ 18 А; грунт в месте сооружения - глина; климатическая зона 3; дополнительно в качестве заземления используется водопровод с сопротивлением растеканию 9 Ом.
Решение. Предполагается сооружение заземлителя с внешней стороны здания, к которому примыкает подстанция, с расположением вертикальных электродов в один ряд длиной 20 м; материал - круглая сталь диаметром 20 мм, метод погружения - ввертывание; верхние концы вертикальных стержней, погруженные на глубину 0,7 м, приварены к горизонтальному электроду из той же стали.
1. Для стороны 6 кВ требуется сопротивление заземления, определяемое формулой (8-12):

где расчетное напряжение на заземляющем устройстве принято равным 125 В, так как заземляющее устройство выполняется общим для сторон 6 и 0,4 кВ.
Согласно ПУЭ сопротивление заземления не должно превышать 4 Ом. Таким образом, расчетным является сопротивление заземления r зм = 4 Ом.
2. Сопротивление искусственного заземлителя рассчитывается с учетом использования водопровода в качестве параллельной ветви заземления

3. Рекомендуемое для расчетов сопротивление грунта в месте сооружения заземления (глина) по табл. 8-1 составляет 70 Ом*м. Повышающие коэффициенты к для 3-й климатической зоны по табл. 8-2 принимаются равными 2,2 для горизонтальных электродов при глубине заложения 0,7 м и 1,5 для вертикальных электродов длиной 2-3 м при глубине заложения их верхнего конца 0,5-0,8 м.
Расчетные удельные сопротивления грунта:
для горизонтальных электродов расч.г = 2,2 × 70 = 154 Ом*м;
для вертикальных электродов расч.в= 1,5х70 = 105 Ом*м.
4. Определяется сопротивление растеканию одного стержня диаметром 20 мм, длиной 2 м при погружении ниже уровня земли на 0,7 м по формуле из табл. 8-3:



5. Определяется примерное число вертикальных заземлителей при предварительно принятом коэффициенте использования К и. г. зм = 0,9

6. Определяется сопротивление растеканию горизонтального электрода из круглой стали диаметром 20 мм, приваренного к верхним концам вертикальных стержней.
Коэффициент использования горизонтального электрода в ряду из стержней при числе их примерно 6 и отношении расстояния между стержнями к длине стержнями a/l = 20/5х2 = 2 в соответствии с табл. 8-6 принимается равным 0,85.
Сопротивление растеканию горизонтального электрода определяется по формуле из табл. 8-3 и 8-8:
Таблица 8-8

Коэффициенты повышения сопротивления по отношению к измеренному
удельному сопротивлению грунта (или сопротивлению заземления)
для средней полосы СССР

Примечания: 1) к 1 применяется, если измеренная величина (Rх) соответствует примерно минимальному значению (грунт влажный - времени измерений предшествовало выпадение большого количества осадков);
2) к 2 применяется, если измеренная величина (Rх) соответствует примерно среднему значению (грунт средней влажности - времени измерений предшествовало выпадение небольшого количества осадков);
3) к 3 применяется, если измеренная величина (Rх) соответствует примерно наибольшему значению (грунт сухой - времени измерений предшествовало выпадение незначительного количества осадков).

7. Уточненное сопротивление растеканию вертикальных электродов

8. Уточненное число вертикальных электродов определяется при коэффициенте использованияК и. г. зм= 0,83, принятом из табл. 8-4 при n = 5 и a/l = 20/2х4 = 2,5 (n = 5 вместо 6 принято из условия уменьшения числа вертикальных электродов при учете проводимости горизонтального электрода)

Окончательно принимается четыре вертикальных стержня, при этом сопротивление растеканию несколько меньше расчетного.

ИЗМЕРЕНИЕ УДЕЛЬНОГО СОПРОТИВЛЕНИЯ ГРУНТА

Электрофизические свойства грунта, в котором находится заземлитель, определяются прежде всего его удельным сопротивлением. Чем меньше удельное сопротивление, тем более благоприятные условия для расположения заземлителя.

Удельное сопротивление грунта – сопротивление между противоположными плоскостями куба земли с ребром длины 1 м. Единица измерения удельного сопротивления – ом на метр (Ом·м).

Чтобы оценить величину удельного сопротивления грунта, сравним его с наиболее распространенным электротехническим материалом – медью. Так, куб меди таких же размеров имеет сопротивление 1,72·10 -8 Ом·м. При 20°С и средней влажности удельное сопротивление грунта составляет примерно ρ = 100 Ом·м, то есть земля имеет удельное сопротивление в 5,7 млрд. раз больше.

В табл. 6.3. приведены приближенные значения удельных сопротивлений различных типов почвы при средней влажности.

Таблица 6.3 – Удельное электрическое сопротивление грунтов ρ гр

При оборудовании заземляющих устройств необходимо знать не приближенные, а точные значения удельных сопротивлений грунта в данном месте. Получение такой информации возможно только непосредственными измерениями на местах.

Свойства почвы могут меняться в зависимости от ее влажности и температуры, поэтому удельное сопротивление может иметь разные значения в разные времена года из-за высыхания или промерзания. Эти факторы учитываются при измерениях удельного сопротивления земли сезонными коэффициентами. В табл. 6.4 приведены коэффициенты, учитывающие состояние земли во время измерений.

Таблица 6.4 – Сезонные коэффициенты сопротивления грунта

Коэффициент k 1 применяется, если земля влажная и измерениям предшествовало выпадение большого количества осадков; k 2 – земля нормальной влажности и измерения предшествовало выпадение небольшого количества осадков; k 3 – земля сухая, количество осадков ниже нормы.

Измерение удельного сопротивления почвы обычно проводят в теплое время года. В данной лабораторной работе используется измеритель заземлений типа МС-08 (рис. 6.3). Прибор имеет собственный источник питания в виде генератора, приводимого во вращательное движение с помощью ручки. Если в процессе измерения стрелка прибора колеблется, это является признаком наличия посторонних токов в земле. Чтобы избежать погрешности в измерениях достаточно изменить частоту вращения ручки. Однако следует заметить, что для обеспечения надлежащей точности измерения эта частота должна находиться в пределах 90...150 об/мин.

Измеритель заземления МС-08 имеет три шкалы: 0 – 1000 Ом, 0 – 100 Ом и 0 – 10 Ом. Удельное сопротивление грунта измеряют шкалой на 1000 Ом. Прибор работает по принципу магнитоэлектрического логометра, он содержит две рамки, одна из которых включается как амперметр, а другая – как вольтметр. Эти обмотки действуют на ось прибора в противоположных направлениях, благодаря чему отклонения стрелки прибора пропорциональны сопротивлению.

Рис. 6.3 – Измеритель заземлений МС-08

Шкала прибора градуирована в омах, источником питания при измерении служит генератор Г постоянного тока, приводимого во вращение от руки. На общей с генератором оси укреплены прерыватель П1 и выпрямитель П2 (рис. 6.4).

Рис. 6.4 – Электрическая схема измерителя заземлений МС-08: Г – генератор, Р – реостат, Л – логометр, П1 – прерыватель, П2 – выпрямитель, П3 – переключатель.

Измерение удельного сопротивления грунта следует выполнять в стороне от трубопроводов и других металлических конструкций, которые могут внести погрешность в результаты. Схема измерения показана на рис. 6.5.

Рис. 6.5 – Схема измерения удельного сопротивления грунта

Чем больше значение а , тем больший объем почвы охватывается электрическим полем электродов и более точными являются результаты измерений. Изменяя расстояние а, можно получить зависимость удельного сопротивления земли от разнесения электродов. При однородной структуре грунта значение ρ не зависит от расстояния а (изменения могут быть вследствие разной степени влажности).

Таким образом, используя зависимость ρ от расстояния между электродами, можно судить о величинах удельных сопротивлений на разной глубине. Удельное сопротивление грунта определяют по формуле

где R – сопротивление прибора, Ом.

Измерения удельного сопротивления желательно выполнять в нескольких местах, рассчитывая затем среднее значение. Электроды следует забивать в землю для более плотного контакта, ввертывание стержней для целей измерения не рекомендуется.

Важнейшей функцией заземления является электробезопасность. Перед его установкой в частном доме, на подстанции и в других местах необходимо произвести расчёт заземления.

Как выглядит заземление частного дома

Электрический контакт с землёй создаёт погруженная в грунт металлическая конструкция из электродов вместе с подключёнными проводами – всё это представляет собой заземляющее устройство (ЗУ).

Места соединения с ЗУ проводника, защитного провода или экрана кабеля называются точками заземления. На рисунке ниже изображено заземление из одного вертикального металлического проводника длиной 2500 мм, вкопанного в землю. Его верхняя часть размещается на глубине 750 мм в траншее, ширина которой в нижней части составляет 500 мм и в верхней – 800 мм. Проводник может быть связан сваркой с другими такими же заземлителями в контур горизонтальными пластинами.


Вид простейшего заземления помещения

После монтажа заземлителя траншея засыпается грунтом, а один из электродов должен выходить наружу. К нему подключается провод над поверхностью земли, который идет к шине заземления в электрощите управления.

При нахождении оборудования в нормальных условиях на точках заземления напряжение будет нулевым. В идеальном случае при коротком замыкании сопротивление ЗУ будет равно нулю.

При возникновении в заземлённой точке потенциала, должно произойти его зануление. Если рассмотреть любой пример расчёта, можно увидеть, что ток короткого замыкания I з имеет определенную величину и не может быть бесконечно большим. Грунт обладает сопротивлением растекания тока R з от точек с нулевым потенциалом до заземлителя:

R з = U з / I з, где U з – напряжение на заземлителе.

Решение задачи правильного расчёта заземления особенно важно для электростанции или подстанции, где сосредоточено много оборудования, работающего под высоким напряжением.

Величина R з определяется характеристиками окружающего грунта: влажностью, плотностью, содержанием солей. Здесь также важными параметрами являются конструкции заземлителей, глубина погружения и диаметр подключённого провода, который должен быть таким же, как у жил электропроводки. Минимальное поперечное сечение голого медного провода составляет 4 мм 2 , а изолированного – 1,5 мм 2 .

Если фазный провод коснётся корпуса электроприбора, падение напряжения на нём определяется величинами R з и максимально возможного тока. Напряжение прикосновения U пр всегда будет меньше, чем U з, поскольку его снижают обувь и одежда человека, а также расстояние до заземлителей.

На поверхности земли, где растекается ток, также существует разность потенциалов. Если она высокая, человек может попасть под шаговое напряжение U ш опасное для жизни. Чем дальше от заземлителей, тем оно меньше.

Величина U з должна иметь допустимое значение, чтобы обеспечить безопасность человека.

Снизить величины U пр и U ш можно, если уменьшить R з, за счёт чего также уменьшится ток, протекающий через тело человека.

Если напряжение электроустановки превышает 1 кВ (пример – подстанции на промышленных предприятиях), создаётся подземное сооружение из замкнутого контура в виде рядов металлических стержней, забитых в землю и соединённых сваркой между собой при помощи стальных полос. За счёт этого производится выравнивание потенциалов между смежными точками поверхности.

Безопасная работа с электросетями обеспечивается не только за счёт наличия заземления электроприборов. Для этого ещё необходимы предохранители, автоматические выключатели и УЗО.

Заземление не только обеспечивает разность потенциалов до безопасного уровня, но и создаёт ток утечки, которого должно хватать для срабатывания защитных средств.

Соединять с заземлителем каждый электроприбор нецелесообразно. Подключения производят через шину, расположенную в квартирном щитке. Вводом для неё служит провод заземления или провод РЕ, проложенный от подстанции к потребителю, например, через систему TN-S.

Расчёт заземляющего устройства

Расчёт заключается в определении R з. Для этого необходимо знать удельное сопротивление грунта ρ, измеряемое в Ом*м. За основу принимают его средние значения, которые сводят в таблицу.

Определение удельного сопротивления грунта

Грунт Грунт Удельное сопротивление р, Ом*м
Песок при глубине залегания вод менее 5 м 500 Садовая земля 40
Песок при глубине залегания вод менее 6 и 10 м 1000 Чернозем 50
Супесь водонасыщенная (текучая) 40 Кокс 3
Супесь водонасыщенная влажная (пластинчатая) 150 Гранит 1100
Супесь водонасыщенная слабовлажная (твердая) 300 Каменный уголь 130
Глина пластичная 20 Мел 60
Глина полутвердая 60 Суглинок влажный 30
Суглинок 100 Мергель глинистый 50
Торф 20 Известняк пористый 180

Из приведённых в таблице значений видно, что значение ρ зависит не только от состава грунта, но и от влажности.

Кроме того, табличные величины удельных сопротивлений умножают на коэффициент сезонности K м, учитывающий промерзание грунта. В зависимости от низшей температуры (0 С) его значения могут быть следующими:

  • от 0 до +5 — K м =1,3/1,8;
  • от -10 до 0 — K м =1,5/2,3;
  • от -15 до -10 — K м =1,7/4,0;
  • от -20 до -15 — K м =1,9/5,8.

Значения коэффициента K м зависят от способа заложения заземлителей. В числителе приведены его значения при вертикальном погружении заземлителей (с заложением вершин на глубине 0,5-0,7 м), а в знаменателе – при горизонтальном расположении (на глубине 0,3-0,8 м).

На выбранном участке ρ грунта может существенно отличаться от средних табличных значений из-за техногенных или природных факторов.

Когда проводятся ориентировочные расчёты, для одиночного вертикально заземлителя R з ≈ 0,3∙ρ∙ K м.

Точный расчёт защитного заземления производят по формуле:

R з = ρ/2πl∙ (ln(2l/d)+0.5ln((4h+l)/(4h-l)), где:

  • l – длина электрода;
  • d – диаметр прута;
  • h – глубина залегания средней точки заземлителей.

Для n вертикальных электродов, соединённых сверху сваркой R n = R з /(n∙ K исп), где K исп – коэффициент использования электрода, учитывающий экранирующее влияние соседних (определяется по таблице).

Расположение заземляющих электродов

Формул расчёта заземления существует много. Целесообразно применять метод для искусственных заземлителей с геометрическими характеристиками в соответствии с ПУЭ. Напряжение питания составляет 380 В для трёхфазного источника тока или 220 В однофазного.

Нормированное сопротивление заземлителя, на которое следует ориентироваться, составляет не более 30 Ом для частных домов, 4 Ом – для источника тока при напряжении 380 В, а для подстанции 110 кВ – 0,5 Ом.

Для группового ЗУ выбирается горячекатаный уголок с полкой не менее 50 мм. В качестве горизонтальных соединительных перемычек используется полоса сечением 40х4 мм.

Определившись с составом грунта, по таблице выбирается его удельное сопротивление. В соответствии с регионом, подбирается повышающий коэффициент сезонности K м.

Выбирается количество и способ расположения электродов ЗУ. Они могут быть установлены в ряд или в виде замкнутого контура.


Замкнутый контур заземления в частном доме

При этом возникает их экранирующее влияние друг на друга. Оно тем больше, чем ближе расположены заземлители. Значения коэффициентов использования заземлителей K исп для контура или расположенных в ряд, отличаются.

Значения коэффициента K исп при разных расположениях электродов

Количество заземлит. n (шт.)
1 2 3
2 0.85 0.91 0.94
4 0.73 0.83 0.89
6 0.65 0.77 0.85
10 0.59 0.74 0.81
20 0.48 0.67 0.76
Расположение электродов в ряд
Количество заземлит. n (шт.) Отношение расстояния между заземлителями к их длине
4 0.69 0.78 0.85
6 0.61 0.73 0.8
10 0.56 0.68 0.76
20 0.47 0.63 0.71

Влияние горизонтальных перемычек незначительно и в оценочных расчётах может не учитываться.

Примеры расчёта контура заземления

Для лучшего освоения методов расчёта заземления лучше рассмотреть пример, а лучше – несколько.

Пример 1

Заземлители часто делают своими руками из стального уголка 50х50 мм длиной 2,5 м. Расстояние между ними выбирается равным длине – h=2.5м. Для глинистого грунта ρ = 60 Ом∙м. Коэффициент сезонности для средней полосы, выбранный по таблицам, равен 1,45. С его учётом ρ = 60∙1,45 = 87 Ом∙м.

Для заземления по контуру роется траншея глубиной 0,5 м и в дно забивается уголок.

Размер полки уголка приводится к условному диаметру электрода:

d = 0.95∙p = 0.995∙0.05 = 87 Ом∙м.

Глубина залегания средней точки уголка составит:

h = 0,5l+t = 0.5∙2.5+0.5 = 1.75 м.

Подставив значения в ранее приведённую формулу, можно определить сопротивление одного заземлителя: R = 27.58 Ом.

По приближенной формуле R = 0.3∙87 = 26.1 Ом. Из расчёта следует, что одного стержня будет явно недостаточно, поскольку по требованиям ПУЭ величина нормированного сопротивления составляет R норм = 4 Ом (для напряжения сети 220 В).

Количество электродов определяется методом приближения по формуле:

n = R 1 /(k исп R норм) = 27,58/(1∙4) = 7 шт.

Здесь вначале принимается k исп = 1. По таблицам находим для 7 заземлителей k исп = 0,59. Если подставить это значение в предыдущую формулу и снова пересчитать, получится количество электродов n = 12 шт. Затем производится новый перерасчёт для 12 электродов, где опять по таблице находится k исп = 0,54. Подставив это значение в ту же формулу, получим n = 13.

Таким образом, для 13 уголков R n = R з /(n*η) = 27,58/(13∙0,53) = 4 Ом.

Пример 2

Нужно изготовить искусственное заземление с сопротивлением R норм = 4 Ом, если ρ = 110 Ом∙м.

Заземлитель изготавливается из стержней диаметром 12 мм и длиной 5 м. Коэффициент сезонности по таблице равен 1,35. Ещё можно учесть состояние грунта k г. Измерения его сопротивления производились в засушливый период. Поэтому коэффициент составил k г =0,95.

На основе полученных данных за расчётное значение удельного сопротивления земли принимается следующая величина:

ρ = 1,35∙0,95∙110 = 141 Ом∙м.

Для одиночного стержня R = ρ/l = 141/5 = 28,2 Ом.

Электроды располагаются в ряд. Расстояние между ними должно быть не меньше длины. Тогда коэффициент использования составит по таблицам: k исп = 0,56.

Находим число стержней для получения R норм = 4 Ом:

n = R 1 /(k исп R норм) = 28,2/(0,56∙4) = 12 шт.

После монтажа заземления производятся измерения электрических параметров на месте. Если фактическое значение R получается выше, ещё добавляются электроды.

Если рядом находятся естественные заземлители, их можно использовать.

Особенно часто это делается на подстанции, где требуется самая низкая величина R. Оборудование здесь используется максимально: подземные трубопроводы, опоры линий электропередач и др. Если этого недостаточно, добавляется искусственное заземление.


Естественное заземление на даче через арматуру фундамента

Устройство размещается внутри фундамента, где шина для подключения выводится наружу.

Любой приведённый пример можно использовать как алгоритм расчёта. При этом для оценки правильности может быть применена онлайн-программа.


Как выглядит онлайн-программа, с помощью которой можно рассчитать заземление

Ошибки монтажа. Видео

Избежать ошибок в монтаже заземляющего устройства поможет это видео.

Самостоятельные расчёты заземления являются оценочными. После его монтажа следует произвести дополнительные электрические измерения, для чего приглашаются специалисты. Если грунт сухой, нужно использовать длинные электроды из-за плохой проводимости. Во влажном грунте поперечное сечение электродов следует брать как можно больше по причине повышенной коррозии.