Торцевой аксиальный генератор для ветротурбины. Как правильно делать дисковый генератор инструкция Самодельные аксиальные ветрогенераторы на постоянных магнитах

То, что генератор на неодимовых магнитах, например ветрогенератор, является полезным, уже ни у кого не вызывает сомнений. Если даже все приборы в доме и не удастся обеспечить энергией таким способом, то все-таки при длительном использовании он покажет себя с выигрышной стороны. Изготовление прибора своими руками сделает эксплуатацию еще экономичнее и приятнее.

Характеристики неодимовых магнитов

Но давайте сначала выясним, что собой представляют магниты. Они появились не так давно. Приобрести в магазине магниты можно было с девяностых годов прошлого века. Изготовлены они из неодима, бора и железа. Основным элементом, конечно, является неодим. Это металл лантоноидной группы, с помощью которого магниты приобретают огромную силу сцепления. Если взять две штуки большого размера и притянуть друг к другу, то расцепить их будет почти невозможно.

В продаже в основном, конечно, встречаются миниатюрные виды. В любом сувенирном магазине можно найти шарики (или другую форму) из этого металла. Высокая цена неодимовых магнитов объясняется сложностью добычи сырья и технологии его производства. Если шарик диаметром 3-5 миллиметров обойдется всего в несколько рублей, то за магнитик диаметром от 20 миллиметров и выше придется выложить 500 рублей и более.

Неодимовые магниты получают в специальных печах, где процесс происходит без доступа кислорода, в вакууме или атмосфере с инертным газом. Самые распространенные — это магниты с аксиальным намагничиванием, в которых вектор поля направлен вдоль одной из плоскостей, где измеряется толщина.

Характеристики неодимовых магнитов очень ценны, но их легко можно испортить без возможности восстановления. Так, сильный удар способен лишить их всех свойств. Поэтому нужно стараться избегать падений. Также у разных видов имеется свой температурный предел, который варьируется от восьмидесяти до двухсот пятидесяти градусов. При температуре выше предельной магнит теряет свои свойства.

Правильное и аккуратное использование служит залогом сохранения качеств в течение тридцати лет и более. Естественное размагничивание составляет всего один процент в год.

Применение неодимовых магнитов

Их часто используют в опытах в области физики и электротехники. Но и на практике эти магниты нашли уже широкое применение, например, в промышленности. Нередко их можно найти и в составе сувенирной продукции.

Высокая степень сцепления делает их очень полезными при поиске предметов из металла, находящихся под землей. Поэтому многие поисковики используют оборудование с применением неодимовых магнитов, чтобы находить технику, оставшуюся с военных времен.

Если старые акустические колонки еле работают, то иногда стоит к ферритовым магнитам приложить неодимовые, и аппаратура снова отлично зазвучит.

Так и на двигателе или генераторе можно попробовать заменить старые магниты. Тогда есть шанс, что техника заработает намного лучше. Потребление при этом даже снизится.

Человечество уже давно ищет На неодимовых магнитах, как некоторые считают, технология вполне может обрести реальные очертания.

Вертикально ориентированный ветрогенератор в готовом виде

К ветрогенераторам, особенно в последние годы, снова возобновился интерес. Появились новые модели, более удобные и практичные.

Еще недавно главным образом использовались горизонтальные ветрогенераторы, имеющие три лопасти. А вертикальные виды не распространялись из-за сильной нагрузки на подшипники ветроколеса, вследствие чего возникало увеличенное трение, поглощающее энергию.

Но благодаря использованию принципов ветрогенератор на неодимовых магнитах стал применяться именно вертикально-ориентированный, с выраженным свободным инерционным вращением. В настоящее время он доказал свою более высокую эффективность по сравнению с горизонтальным.

Легкий старт достигается благодаря принципу магнитной левитации. А благодаря многополюсности, которая дает номинальное напряжение на малых оборотах, удается отказаться от редукторов полностью.

Некоторые приборы способны начать работу, когда скорость ветра составляет всего полтора сантиметра в секунду, а при достижении всего трех—четырех метров в секунду, она может уже равняться вырабатываемой мощности прибора.

Область применения

Таким образом, ветрогенератор, в зависимости от своей мощности, способен обеспечить энергией разные строения.

    Городские квартиры.

    Частные дома, дачи, магазины, мойки.

    Детские сады, больницы, порты и другие городские учреждения.

    Преимущества

    Приборы приобретают в готовом виде или изготавливают самостоятельно. Купив ветрогенератор, его остается только установить. Все регулировки и центровки уже пройдены, проведены испытания при различных климатических условиях.

    Неодимовые магниты, которые используются вместо редуктора и подшипников, позволяют достичь следующих результатов:

    сокращается трение, и повышается срок эксплуатации всех деталей;

    исчезает вибрация и шум прибора при работе;

    себестоимость уменьшается;

    экономится электроэнергия;

    исчезает необходимость регулярно обслуживать прибор.

Ветрогенератор можно приобрести со встроенным инвертором, который заряжает батарею, а также с контроллером.

Наиболее распространенные модели

Генератор на неодимовых магнитах может быть изготовлен на одинарном или двойном креплении. Помимо основных неодимовых, в конструкции могут быть предусмотрены дополнительные ферритовые магниты. Высоту крыла делают разную, в основном от одного до трех метров.

Более мощные модели имеют двойное крепление. В них также устанавливаются дополнительные генераторы на ферритовых магнитах и имеется различная высота крыла и диаметр.

Самодельные конструкции

Учитывая то, что приобрести генератор на неодимовых магнитах, работающий от ветра, далеко не всем по карману, часто решаются на сооружение конструкции своими руками. Рассмотрим различные варианты устройств, которые без труда можно сделать самостоятельно.

Ветрогенератор своими руками

Имеющая вертикальную ось вращения, имеет обычно от трех до шести лопастей. В конструкцию входят статор, лопасти (неподвижные и вращающиеся) и ротор. Ветер влияет на лопасти, вход в турбину и выход из нее. В качестве опоры иногда используют автомобильные ступицы. Такой генератор на неодимовых магнитах является бесшумным, остается стабильным даже при сильном ветре. Ему не нужна высокая мачта. Движение начинается даже при очень слабом ветре.

Каким может быть устройство неподвижного генератора

Известно, что электродвижущая сила через провод генерируется посредством изменения магнитного поля. В сердечнике неподвижного генератора создается путем электронного управления, не механически. Генератор управляет потоком автоматически, действуя резонансно и потребляя очень малую мощность. Его колебания отклоняют в стороны магнитные потоки железных или ферритовых сердечников. Чем больше частота колебаний, тем сильнее мощность генератора. Запуск реализуется путем кратковременного импульса на генератор.

Как сделать вечный двигатель

На неодимовых магнитах в основном однотипны по принципу действия. Стандартным уже вариантом является аксиальный тип.

За его основу берется ступица из автомобиля с тормозными дисками. Такая база станет надежной и мощной.

При решении ее использовать ступицу следует полностью разобрать и проверить, достаточно ли там смазки, а при необходимости очистить ржавчину. Тогда готовый прибор будет приятно покрасить, и он приобретет «домашний», ухоженный вид.

В однофазном приборе полюсы должны иметь равное количество с количеством магнитов. В трехфазном должно соблюдаться соотношение двух к трем или четырех к трем. Магниты размещают с чередованием полюсов. Они должны быть точно расположены. Для этого можно начертить на бумаге шаблон, вырезать его и точно перенести на диск.

Чтобы полюсы не перепутать, маркером делают пометки. Для этого магниты подносят одной стороной: ту, что притягивает, обозначают знаком «+», а ту, что отталкивает, - «-». Магниты должны притягиваться, то есть те, что расположены друг напротив друга, должны иметь разные полюсы.

Обычно используется суперклей или подобный ему, а после наклейки заливают еще эпоксидной смолой для увеличения прочности, предварительно сделав «бордюрчики», чтобы она не вытекла.

Трех- или однофазный

Генератор на неодимовых магнитах обычно делают конструкция при нагрузке будет работать с вибрацией, так как не обеспечится постоянная отдача тока, из-за чего получится скачкообразная амплитуда.

Зато при трехфазной системе в любое время гарантируется постоянная мощность благодаря компенсации фаз. Поэтому ни вибрации не будет возникать, ни гудения. А эффективность работы станет на пятьдесят процентов выше, чем с одной фазой.

Намотка катушки и остальная сборка

Расчет генератора на неодимовых магнитах в основном делается на глаз. Но лучше, конечно, добиваться точности. Например, для тихоходного устройства, где зарядка аккумулятора начинала бы функционировать при 100—150 оборотах в минуту, потребуется от 1000 до 1200 витков. Общее количество делится на количество катушек. Столько потребуется витков в каждую из них. Катушки наматывают по возможности наиболее толстым проводом, так как при меньшем сопротивлении ток будет больше (при большом напряжении сопротивлением весь ток заберется).

Обычно используют круглые, но лучше мотать катушки вытянутой формы. Внутреннее отверстие должно равняться диаметру магнита или быть больше него. Кроме того, оптимальный магнит получится в виде прямоугольника, а не шайбы, так как у первых магнитное поле растянуто по длине, а у последних — сосредоточено в центре.

Толщину статора делают равной толщине магнитов. Для формы можно использовать фанеру. На ее дне и поверх катушек размещают стеклоткань для прочности. Катушки соединяют между собой, и каждую фазу выводят наружу для соединения затем треугольником или звездой.

Остается сделать мачту и надежное основание.

Конечно, это не вечный двигатель на неодимовых магнитах. Однако экономия при использовании ветрогенератора будет обеспечена.

Небольшие разъяснения и комментарии автора для тех,
кто самостоятельно желает изготовить низкооборотный генератор своими руками.

Если у желающего изготовить низкооборотный генератор есть финансовые средства, коллектив единомышленников, техническое оборудование, соответствующие знания и опыт, то это совсем не сложно. Однако в любом деле существует много тонкостей, которые необходимо будет знать в процессе изготовления данного генератора, так как без знаний основ конструирования и не имея соответствующего опыта, сразу изготовить хороший генератор может не получится. В данной статье я постараюсь выделить некоторые нюансы, чтобы у изготовителя было меньше ошибок. Здесь не будут затронуты генераторы или двигатели промышленного изготовления, из которых можно что-либо переделать, так как без соответствующих расчётов у вас получится только жалкое подобие низкооборотного генератора.

В качестве примера возьмём один модуль низкооборотного генератора Белашова МГБ-300-144-2.

Фиг. 1 Фиг. 2 Фиг. 3

◄|| Фотографии и технические характеристики электрических машин Белашова ||

Электрическая машина
Электрическая машина
Электрическая машина
Низкооборотная машина
Низкооборотная машина
Низкооборотная машина
Низкооборотный генератор
Низкооборотный генератор
Низкооборотный генератор
Низкооборотный генератор
Низкооборотный генератор

◄|| Фотографии электрических машин ||

Электрическая машина
Сварочный генератор
Автомобильный генератор
Низкооборотная машина
Низкооборотная машина
Низкооборотная машина
Низкооборотный генератор
Низкооборотный генератор
Низкооборотный генератор
Низкооборотный генератор
Низкооборотный генератор

◄|| Характеристики электрических машин ||

Модульный низкооборотный генератор Белашова МГБ-300-144-2, предназначен для технических устройств, которые преобразуют большой момент силы, при низких оборотах, в электрическую энергию и могут быть использованы для ветряных двигателей, ручных аварийных энергетических установок, бесплотинных гидроэлектростанций и так далее…

В данной конструкции однофазного низкооборотного генератора применено два ряда многовитковых обмоток, но внутри этого генератора можно разместить ещё два ряда многовитковых обмоток сделав его двухфазным, что увеличит мощность генератора в два раза. В зависимости от количества модулей потребитель может самостоятельно комплектовать из отдельных модулей любые параметры генератора, на необходимое напряжение, нужный ток и заданное количество оборотов.

Первый вопрос, который обычно задают покупатели, это КПД низкооборотных генераторов при этом они не знают, что данная величина является не определённой, которая зависит от многих параметров или величин и прежде всего от того как был сделан сам генератор. Приведу конкретный пример, как влияет КПД генератора, если не правильно или не качественно изготовлены многовитковые обмотки статора, так как данная деталь является очень важной и влияет на многие характеристики низкооборотного генератора.

При изготовлении многовитковых катушек статора для низкооборотного генератора необходимо учитывать, что существуют прямоугольные или круглые провода и множество типов намоток, но в данном случае мы рассмотрим только три вида намоток изображённых на Фиг.4:

Рядная намотка многовитковых обмоток поз.1

Намотка многовитковых обмоток в шахматном порядке поз.2

Намотка многовитковых обмоток в беспорядочном виде (в навал) поз.3.

Фиг. 4

Самой важной характеристикой катушки является коэффициент намотки (степень заполнения обмоточного пространства многовитковой катушки медью) - отношение площади меди катушки к площади обмоточного пространства:

Где:

W - число витков катушки,

Q - сечение провода с изоляцией, мм²

S - площадь поперечного сечения обмоточного окна, мм².

При этом необходимо учитывать, что толстым проводом произвести намотку многовитковых обмоток статора очень сложно и тем более создать её точный профиль для правильного вхождения в магнитную систему ротора. Более тонким проводом можно увеличить коэффициент намотки, а при помощи параллельного или последовательного соединения обмоток статора довести расчётное сечение провода до нужной величины. Например, в статоре однофазного низкооборотного генератора МГБ-300-144-2, расположено два ряда многовитковых обмоток, которые были намотаны в беспорядочном виде проводом имеющего диаметр 0,29 мм (так как у меня не было возможности изготовить рядную обмотку). Внешние многовитковые обмотки статора имеют по 580 витков. Внутренние обмотки статора состоят из 360 витков. В итоге получается, что статор генератора содержит 16920 витков. Значит если на каждой многовитковой обмотке (с учётом коэффициента намотки) мы не домотали хотя бы по 20 витков, то в итоге у нас получается, что мы не смогли домотать на наш статор ещё 720 витков. Если в каждом ряду статора низкооборотного генератора расположено две фазы по два ряда многовитковых обмоток, то у нас получится, что мы потеряли 1440 витков, фиг.5.

Фиг. 5

Обычно обмоточный коэффициент находится в пределах 0,5 - 0,8, но необходимо знать, что чем выше коэффициент намотки, тем будут лучше характеристики низкооборотного генератора. Он наиболее высок при шахматной намотке многовитковых обмоток самоспекаемыми эмалированными проводами. Преимущество данных эмалированных проводов является то, что они склеиваются при помощи лака под действием тепла или растворителей. После спекания образуется самонесущая намотка. Применение самоспекаемых эмалированных проводов имеет преимущество в цене и при изготовлении, так как намоточные каркасы, клейкая лента, компаунд и пропиточные материалы могут быть сэкономлены. Причём необходимо обратить особое внимание на то, что для лучшего охлаждения многовитковых обмоток самоспекающиеся эмалированные катушки статора должны плотно примыкать через теплопроводящий диэлектрик к алюминиевому корпусу низкооборотного генератора, так как для нормальной работы генератора отвод тепла от многовитковых обмоток является главной задачей, которая влияет на КПД генератора.

Производители низкооборотных генераторов для ветряных установок, мини ГЭС или переносных электростанций, должны сообщать своим покупателям все преимущества и недостатки этих машин. Покупатели должны знать некоторые важные технические характеристики генератора:

Внутреннее сопротивление многовитковых обмоток генератора не только при 20°С, но и при изменении температуры многовитковых обмоток генератора от 20°С до 80°С,

Ток короткого замыкания многовитковых обмоток генератора на заданных количествах оборотах, не только при 20°С, но и при изменении температуры многовитковых обмоток генератора от 20°С до 80°С, где участвует только r o ,

Рабочий ток генератора на заданных количествах оборотах, не только при 20°С, но и при изменении температуры многовитковых обмоток генератора от 20°С до 80°С, где участвует r o + r н ,

При изготовлении статора или ротора из стального магнитопровода, на котором установлены многовитковые обмотки, необходимо знать тормозной момент ротора генератора,

Рабочее напряжение генератора, на заданных количествах оборотах,

Напряжение холостого хода генератора (без какой-либо нагрузки),

Способ отвода тепла от многовитковых обмоток генератора.

Данные технические характеристики нужны для согласования внутреннего сопротивления многовитковых обмоток генератора с нагрузкой, так как для получения наибольшей мощности во внешней цепи сопротивление нагрузки должно быть равно внутреннему сопротивлению генератора. Например, если многовитковые обмотки генератора имеют большое внутреннее сопротивление, то данный тип генератора менее подвержен колебаниям выходного напряжения. У генератора имеющего маленькое внутреннее сопротивление, падение выходного напряжения может превышать 40%. Существуют и другие тонкости в выборе низкооборотных генераторов. Например, если измерение технических характеристик генератора производились при температуре 20°С, то при температуре 70°С вы можете недосчитаться больше половины от заявленной производителем мощности и так далее… Докажем это на конкретных примерах.

Изменение температуры статора низкооборотного генератора (как и других электрических машин) вызывает изменение сопротивления внутри многовитковых обмоток при его работе и даже в не рабочем положении тогда когда низкооборотный генератор был установлен на ветродвигателе, который расположен на Солнце.

Такое изменение сопротивления проводника от температуры, приходящееся на каждый Ом сопротивления данного проводника при изменении температуры его на 1°С, называют температурным коэффициентом «альфа» (a). Таким образом, температурный коэффициент характеризует чувствительность изменения сопротивления проводника к изменению температуры. В данном случае у нас медные обмотки, которые обладают температурным коэффициентом, а = 0,004041.

Например, зная температурный коэффициент меди, мы можем определить внутреннее сопротивление многовитковых обмоток статора, которое произошло при изменении температуры статора, который нагрелся на Солнце до 70°С.

Формула для определения температурного коэффициента выглядит так:

Где:

R 1 – сопротивление данного проводника при одной температуре – T 1 ,

R 2 – сопротивление того же проводника, но при другой температуре – T 2 ,

А – температурный коэффициент металла, из которого проводник сделан,

T 2 - конечная температура обмоток из которого проводник сделан проводник °С,

T 1 - начальная температура обмоток из которого проводник сделан проводник °С.

1.

R 2 = R 1 + R 1 ∙ a ∙ (T 2 - T 1)

R 2 = 6 Ом + 6 Ом ∙ 0,004041 ∙ (70 – 20) = 7,2738 Ом

Где:

R 1 – сопротивление многовитковых обмоток статора при 20°С = 6 Ом,

T 2 - температура статора низкооборотного генератора нагретого на Солнце до 70°С.

Определим ток низкооборотного генератора, на зажимах которого находится напряжение 12 Вольт при температуре окружающей среды = 20°С.

Определим ток низкооборотного генератора, на зажимах которого находится напряжение 12 Вольт при температуре нагретого на Солнце до 70°С.

Определим мощность низкооборотного генератора, на зажимах которого находится напряжение 12 Вольт при температуре окружающей среды = 20°С.

P = U ∙ I = 12 В ∙ 2 А = 24 Вт

Определим мощность низкооборотного генератора, на зажимах которого находится напряжение 12 Вольт при температуре нагретого на Солнце до 70°С.

P = U ∙ I = 12 В ∙ 1,6497566608925183535428524292667 А = 19,797079930710220242514229151192 Вт

Определим падения КПД не работающего, а просто нагретого на Солнце низкооборотного генератора при повышении температуры с 20°С до 70°С. Это допустимая температура для работы электромеханических устройств и агрегатов. Если мы даже гипотетически представим себе, что КПД низкооборотного генератора при 20°С была = 100% (чего не может быть в природе), то мы можем узнать, какой будет потеря мощности при увеличении температуры любых электрических машин. Хотя многие производители электрических машин стараются обходить эти щекотливые вопросы, чтобы не распугать своих покупателей.

24 Вт = 100%

Из этого следует, что низкооборотный генератор, который даже ещё не приступил к работе, но уже потерял 17,52% КПД и это будет только в том случае, если внутреннее сопротивление статора будет маленьким при низком напряжении на обмотках статора. При увеличении напряжения на зажимах генератора соответственно увеличивается внутреннее сопротивление генератора, что соответственно повлечёт за собой ещё больше потерь КПД генератора. При этом мы говорим только об активном сопротивлении многовитковых обмоток статора, не включая в расчёт реактивное сопротивление многовитковых обмоток статора, которое во много раз превышает активное сопротивление проводников. Рассмотрим конкретный пример, когда будет увеличено напряжение на зажимах генератора, которое повлечёт за собой увеличение внутреннего сопротивления многовитковых обмоток статора.

2. Определим сопротивление многовитковых обмоток статора при изменении температуры:

R 2 = R 1 + R 1 ∙ a ∙ (T 2 - T 1)

R 2 = 12 Ом + 12 Ом ∙ 0,004041 ∙ (70 – 20) = 29,0952 Ом

Где:

R 1 – сопротивление многовитковых обмоток статора при 20°С = 12 Ом,

R 2 – сопротивление многовитковых обмоток статора при 70°С,

А – температурный коэффициент меди = 0,004041

T 1 - температура статора низкооборотного генератора при 20°С,

T 2 - температура статора низкооборотного генератора нагретого на Солнце до 70°С.

Определим ток низкооборотного генератора, на зажимах которого находится напряжение 24 Вольта при температуре окружающей среды = 20°С.

Определим ток низкооборотного генератора, на зажимах которого находится напряжение 24 Вольта при температуре нагретого на Солнце до 70°С.

Определим мощность низкооборотного генератора, на зажимах которого находится напряжение 24 Вольта при температуре окружающей среды = 20°С.

P = U ∙ I = 24 В ∙ 2 А = 48 Вт

Определим мощность низкооборотного генератора, на зажимах которого находится напряжение 24 Вольта при температуре нагретого на Солнце до 70°С.

P = U ∙ I = 24 В ∙ 0,А = 19,7970799307102202425142291512 Вт

Определим падения КПД не работающего, а просто нагретого на Солнце низкооборотного генератора при повышении температуры с 20°С до 70°С.

48 Вт = 100%
19,797079930710220242514229151192 Вт = Х%

Это наглядный пример, когда низкооборотный генератор при увеличении напряжения на зажимах генератора и увеличения внутреннего сопротивления в два раза который, даже не приступая к работе, уже потерял 58,76% КПД. Как говорилось ранее, здесь даже не упоминалось о реактивном сопротивлении многовитковых обмоток статора, которое во много раз превышает активное сопротивление проводников. Потому что при начале работы генератора начинает возрастать активное и индуктивное сопротивление многовитковых обмоток статора, которые зависят от числа магнитных систем, количества многовитковых обмоток, способа их соединения и скорости вращения магнитной системы ротора. Поэтому если вам будут предлагать низкооборотный генератор, мощность которого при 220 Вольтах превышает 1000 Вт на 200 об/мин, то делайте выводы сами…

Необходимо особо подчеркнуть, что в зависимости от конструкции статора или ротора многовитковые обмотки генератора Белашова можно соединить таким образом, чтобы амплитуда сигнала переменного тока была пульсирующей.

Пульсирующий переменный ток, изображённый на фиг. 6, обладает следующими преимуществами:

Уменьшение частоты переменного тока,

Уменьшение нагрева многовитковых обмоток,

Уменьшение индуктивного сопротивления многовитковых обмоток.

Фиг. 6

Причём если обычный однофазный генератор переменного тока, который рассчитан на 120 оборотов в минуту, будет выдавать напряжение 12 В и иметь частоту сигнала переменного тока 100 Гц, то при соединении многовитковых обмоток выдающих пульсирующий сигнал переменного тока напряжение и ток останутся как у обычного однофазного генератора, но частота переменного пульсирующего тока составит 50 Гц.

На этих небольших примерах я наглядно показал, как одна величина может сильно влиять на КПД низкооборотного генератора, но при разработке генераторов или электрических машин их множество. Например, при расчёте низкооборотного генератора можно вытянуть одну величину до нормальной характеристики, а две другие могут заметно ухудшить его параметры. Поэтому желательно к каждой ветряной установке или мини ГЭС подходить индивидуально и конкретно изготавливать низкооборотный генератор с учётом температуры окружающей среды, где он будет работать на расчётную нагрузку с учётом удалённости расстояния от первичных преобразователей и так далее…

Потребители низкооборотных генераторов должны знать и другие тонкости этого процесса. Печально вам сообщить, но в мире нет, и не может быть низкооборотных генераторов. В данном случае вы имеете очень мощную машину, которая используется на 5-30% от заложенной мощности. Например, если раскрутить генератор МГБ-300-144-2, до 2000 об/мин, то мы получим 13833 Вт. Данный казус потребители начинают понимать, когда происходит момент покупки, где цена генератора не соответствует заявленной мощности, по отношению к другим электрическим машинам. Если к определению названия отнестись философски, то для богатых это будет низкооборотный генератор, а для всех остальных мощная электрическая машина.

Для того чтобы изготовить низкооборотный генератор изображённый на фиг.4 имеющего:

Хорошее охлаждение,

Модульную конструкцию,

Высокую степень надежности,

Надежное сопротивление изоляции,

Небольшие габариты и небольшой вес,

Генератор, который может легко регулироваться по току и напряжению,

Генератор, который может быть изготовлен от нескольких Вт, до сотен кВт,

Диэлектрический статор, генератора который не имеет потерь на гистерезис,

Диэлектрический статор, генератора который не имеет потерь на вихревые токи,

Генератор, который может автоматически определять напряжение поступающего сигнала,

Генератор, диэлектрический статор которого не имеет потерь на реактивное сопротивление якоря,

Генератор, имеющий систему слежения и регулирования, которая способна автоматически изменять параметры машины,

Электрическую машину постоянного тока, которая способна работать от одного или нескольких независимых источников различного напряжения и тока, а в южных странах от энергии солнечных батарей.

При изготовлении низкооборотного генератора необходимо добиться того чтобы ветряная установка или мини ГЭС должна сама в процессе работы могла менять конструктивную величину генератора коммутируя многовитковые обмотки статора или отдельных модулей таким образом чтобы получить от установки максимальную мощность вырабатываемого сигнала.

Чтобы изготовить качественный низкооборотный генератор необходимо от заказчика получить техническое задание на его разработку, которое поможет определить для каких целей будет использован данный генератор. Например, нам нужен низкооборотный генератор для ветроэнергетической установки максимальной мощностью 800 Вт при 400 об/мин, а для этого необходимо знать.

Примерное техническое задание на разработку низкооборотного генератора МГБ-300-144-2.

1. Назначение. Низкооборотный генератор предназначен для ветроэнергетической установки в отдельном индивидуальном доме или отдаленном поселении, который расположен вдали от центральной электросети.

2. Область применения. Обеспечение местного электроосвещения, для питания электробытовой техники, радиостанций, телевизоров, радиоприемников, холодильников и других маломощных бытовых потребителей до (500 - 800) Вт.

3. Технические характеристики и требования к генератору.

3.1. Мощность генератора при 400 об/мин - 800 Вт.

3.2. Мощность генератора при 300 об/мин - 500 Вт.

3.7. Ток короткого замыкания при 50 об/мин - 1,46 А.

3.8. Частота переменного тока при 500 об/мин - 100 Гц.

3.9. Частота переменного тока при 300 об/мин - 60 Гц.

3.11. Число фаз генератора - одна.

3.12. Возбуждение - магнитоэлектрическое. Материал магнитов Нм30Ди5к8рт с остаточной магнитной индукцией Br - 1,25 Тл.

3.13. Температура окружающей среды от - 40°С до + 60°С.

3.14. Начальный момент вращения винта не более - 0,02 кг∙м.

3.15. Габаритные размеры генератора:

3.16. Наружный диаметр корпуса - 320 мм.

3.17. Длина корпуса без вала - 130 мм.

3.18. Длина генератора с валом - 220 мм.

3.19. Масса генератора не более (уточняется).

3.20. Отвод напряжения из генератора через разъем (тип разъема и место его установки уточняется).

3.21. Система автоматического слежения и регулирования за изменениями конструктивной величины генератора (тип системы уточняется).

3.22. Конструктивное исполнение генератора:

3.23. Генератор сборно-разборный. Состоит генератор из корпуса, в котором размещены четыре идентичных съёмных модуля и один съёмный вал.

3.24. Конструкция идентичных модулей допускает использование их, как для первой, так и для второй фазы.

3.25. Корпус генератора выполнен в закрытом исполнении.

3.26. Количество многовитковых катушек статора - 36 шт.

3.27. Максимальное напряжение на одной катушке статора при 600 об/мин. - 13 В.

3.28. Естественный способ охлаждения - IC 0041 ГОСТ 20459-87.

3.29. Исполнение морское - тропическое, по степени защиты - IR 44 ГОСТ 17494 - 87.

3.30. Изоляция проводящих ток частей генератора - класса "В".

3.31. Режим работы генератора - длительный (S1).

3.32. По всем требованиям генератор должен соответствовать ГОСТ 183 - 74.

3.33. При расчете и конструировании генератора все технические характеристики и параметры машины могут отличаться от технического задания на 5 - 10%.

3.34. Отдельные пункты ТЗ могут уточняться и дополняться при взаимном соглашении сторон.

Однако для того чтобы составить техническое задание на разработку низкооборотного генератора необходимо прежде всего выбрать тип ветряного двигателя, сделать его предварительный расчёт и определить:

Тип ветряного двигателя,

Диаметр колеса ветряного двигателя,

Среднюю годовую скорость воздушного потока,

На какую мощность рассчитан ветряной двигатель,

Коэффициент использования энергии ветра ветряным двигателем,

Вращающие моменты различных типов ветряных двигателей и так далее…

Для того чтобы использовать воздушный поток ветряного двигателя в полной мере необходимо исходить из того что материальная точка основания винта каждой лопасти, в зависимости от длины окружности винтов ветряного двигателя должна проходить расстояние равное скорости ветряного потока.

Например, вычислим количество оборотов низкооборотного генератора при использовании ветряного двигателя имеющего:

Диаметр винта 2 м,

Скорость воздушного потока = 6 м/с.

Из таблицы, размещённой в Патенте Российской Федерации определим максимальную мощность воздушного потока при 6 м/с, которая = 836,54 Вт.

Фиг. 7

Определим длину окружности вокруг винтов ветряного двигателя, которая вычисляется по формуле:

L = П ∙ D
L = 2 м ∙ 3,1415926535897932384626433832795 = 6,283185307179586476925286766559 м

Где:

L – длина окружности,

D – диаметр круга = 2 м,

П – отношение длины окружности к диметру круга = 3,1415926535897932384626433832795.

Определим время, за которое проходит каждая лопасть ветряного двигателя вокруг своей оси при скорости ветра 6 м/с.

6 м/с: 6,283185307179586476925286766559 м = 0,с

Определим максимальное количество оборотов ветряного двигателя за одну минуту, при скорости ветра 6 м/с зная, что 1 мин содержит 60 сек.

0,954929658551372014613302580235 об/с = 1 сек
Х об = 60 сек

Определим мощность ветряной установки, если при помощи низкооборотного генератора установить нагрузку на лопасти ветряного двигателя 30% от максимальной мощности воздушного потока.

836,54 Вт = 100%
Х Вт = 30%

Определим количество оборотов низкооборотного генератора, которое изменится при нагрузке ветряного двигателя на 30% от максимальной мощности ветряного потока.

836,54 Вт = 57,295779513082320876798154814 об/мин
250,962 Вт = Х об/мин

Для того чтобы на скорости 17,18873 об/мин получить мощность 250,962 Вт необходимо установить в низкооборотном генераторе Белашова необходимое количество модулей.

Из технических характеристик видно, что при 50 об/мин один модуль низкооборотного генератора выдаёт 17 Вт мощности.

Определим мощность низкооборотного генератора при 17,188733853924696263038846444 об/мин.

50 об/мин = 17 Вт
17,188733853924696263038846 об/мин = Х Вт

Определим количество модулей, которые при 17,18873385 об/мин могут обеспечить мощность от низкооборотного генератора = 17 Вт.

5,84416951 Вт = 1 модуль
17 Вт = Х модулей

Из предварительных расчётов видно, что для выработки мощности 17 Вт при 17,18873385 об/мин нам необходимо 3 модуля.

В данном примере предварительного расчёта ветряного двигателя не указан:

Тип ветряного двигателя,

Количество лопастей ветряного двигателя,

Масса лопастей ветряного двигателя и их форма,

Коэффициент использования винта на заявленной скорости вращения ветряного колеса,

Потери ветряного двигателя и многое другое…

Полный расчёт ветряных двигателей смотрите в Патенте Российской Федерации

В настоящее время нет производителей, выпускающих своими силами полный комплект оборудования к ветряным установкам или мини ГЭС, которые будут привязаны к реальной местности и конкретным условиям. Эти компании покупают готовые комплектующие у разных производителей, комплектуют готовый продукт и продают потребителям. Даже если ветряной двигатель будет очень хорошим, но он может не подходить для конкретной местности или данных климатических условий. С низкооборотными генераторами Белашова дело обстоит лучше, так как из отдельных модулей можно комплектовать любые параметры генератора на любое напряжение, ток и количество оборотов, где в процессе работы можно изменять конструктивную величину генератора. В производстве они гораздо экономичнее, так как из набора одинаковых модулей можно предложить потребителям различные параметры низкооборотного генератора.

После этого с учётом полученного технического задания необходимо произвести тщательный расчёт и разработку каждой детали низкооборотного генератора:

Статор с многовитковыми обмотками (с учётом изменения температуры многовитковых обмоток),

Количество многовитковых обмоток статора и электрическую схему их соединения,

Форму многовитковых обмоток статора и способ отвода от них тепла,

Форму магнитов и магнитопроводов магнитной системы ротора,

Устройство сведения магнитных систем ротора,

Корпус генератора,

Вал генератора,

К большому сожалению, у меня не было единомышленников и кроме изобретений все расчёты, разработки, конструирование, изготовление генераторов и других электрических машин мне приходилось делать самому.

По моему мнению, вся малая энергетика развивается не в том направлении. Основным стратегическим заблуждением является, то, что любые ветряные установки или мини ГЭС не должны на месте производить готовый продукт, а именно то напряжение и ту мощность, которую заявляет потребитель. Сама альтернативная энергетика должна на первичных пунктах получать как можно больше энергии любого типа и далее без лишних потерь передаваться потребителю, где электрический сигнал должен быть на месте преобразован в готовый продукт, который будет использован потребителем. Сейчас на месте получают готовый продукт и с большими потерями гонят его к потребителю.

Как видим из предыдущих примеров это не правильный подход к разработке низкооборотных генераторов, ветряных установок и мини ГЭС. Для того чтобы грамотно поставить ветряную установку или мини ГЭС необходимо начать с тщательного обследования места установки, а далее сделать капитальный расчёт всех узлов и комплектующих, тогда и получится, то о чём вы думали.

В заключении можно сказать, что малая ветроэнергетика и малая гидроэнергетика во многом дискредитирована в глазах потребителей на фоне не добросовестных производителей и слабо разбирающихся в технике менеджеров. Многие производители обещают большие прибыли, которые могут исходить от альтернативной энергетики, но забывают сказать о тех проблемах, которые могут ожидать потребителей этих генерирующих установок.


Видеофильм демонстрирующий работу кассетно-модульного низкооборотного генератора МГБ-205-72-1.

В этом видеофильме в качестве нагрузки использована лампа накаливания мощностью 40 Ватт при напряжении 12 Вольт.

Кассетно-модульный низкооборотного генератор МГБ-205-72-1 был продемонстрирован на шестой международной выставке электротехнических изделий и новых технологий «Электро - 96» проходившей с 2 по 6 июля 1996 года в «Экспоцентре» Российской Федерации города Москвы.

Необходимо особо подчеркнуть, что после истечения определённого количества времени или длительной непрерывной работы магнитная система низкооборотного генератора, состоящая из постоянных магнитов, начинает ослабевать и крошиться. Если при вращении 45 об/мин кассетно-модульный низкооборотный генератор Белашова МГБ-205-72-1 в 1996 году показывал яркое горение лампы накаливания мощностью 60 Ватт при напряжении 12 Вольт, то в 2019 году он с трудом осиливает лампочку 40 Вт. Некоторые производители магнитов давали гарантии на выпускаемые ими постоянные магниты 20 лет, что практически подтверждает их обязательства.


Видеофильм демонстрирующий работу одного модуля низкооборотного генератора Белашова МГБ-300-84-2.


Видеофильм демонстрирующий работу одного модуля низкооборотного генератора Белашова МГБ-340-84-1.

В этом видеофильме в качестве нагрузки использована лампа накаливания мощностью 60 Ватт при напряжении 12 Вольт.


Видеофильм демонстрирующий зарядку аккумулятора от низкооборотного генератора Белашова МГБ-340-84.

В качестве нагрузки использован 12 Вольтовый аккумулятор. Низкооборотный генератор Белашова МГБ-340-84-1 при 30-40 об/мин даёт зарядный ток не менее одного Ампера.


Видеофильм о механизме образования магнита и магнитной системы из атомов магнитного материала.

Видеофильм посвящён механизму образования магнита и магнитной системы из атомов магнитного материала.


Видеофильм о первой в мире дисковой электрической машине Белашова МДЭМБ-01.

Первая в мире дисковая электрическая машина Белашова МДЭМБ-01 у которой одна или множество многовитковых обмоток дискового диэлектрического ротора, не меняя направление тока в проводниках, проходят сквозь один или множество постоянных подковообразных магнитов. Магниты полюсов системы возбуждения статора, которые расположены в одном ряду, могут иметь разное направление движения магнитных потоков. Дисковая диэлектрическая машина Белашова МДЭМБ-01 была показана на первом канале центрального телевидения в 1993 году.

В этом разделе размещены самодельные ветрогенераторы, сделанные на основе дисковых,аксиальных генераторов. Главная особенность и преимущество таких генераторов это полное отсутствие магнитного залипания. Статор не содержит железа, катушки просто залиты эпоксидной или полиэфирной смолой. Но в отличие от классических генераторов с железными статорами, магнитов в такой генератор требуется как минимум в два раза больше - чтобы получить такую-же мощность. Зато ветрогенераторы с такими генераторами стартуют на малой скорости ветра.

>

Генератор 24 вольта 500 ватт

В этой статье фото и описание изготовления аксиального генератора для работы на АКБ 24 вольта. Есть данные по оборотам и мощности, также к нему рассчитан винт диаметом 2.1м из ПВХ трубы 315мм

>

Фото-отчёт ветрогенератор с дисковым генератором

Изготовление моего пятого ветрогенератора, генератор я делал дисковый для него. Магниты использовал размером 50*30*10 мм, ставил по 8 штук на диск. Статор имеет 12 катушек намотанных проводом 1,06 мм

>

Изготовление ветрогенератора 1.5 кВт

Описание изготовления ветрогенератора мощностью 1500 ватт 48 вольт. Автор этого ветрогенератора Геннадий Заборовский г. Самара. Конструкция этого генератора отличается от классической, сам генератор закрыт оригинальным корпусом, диски больше статора, и сам статор закреплён внутри, а не снаружи, в общем подробности в статье.

>

Ветрогенератор 2кВт для дома

Небольшая история о том как и почему строился ветрогенератор, что нужно учитывать новичкам и как все получилось. В статье нет расчетов и подробных фотографий изготовления, статья немног не об этом, зато есть рассказ автора ветрогенератора о том как сделать ветрогенератор и нужен ли он, насколько это сложно. Так-же есть фото его ветрогенератора

>

Аксиальный ветряк из подручных материалов

Еще один ветрогенератор, собранный из подручных материалов поднят на ветер. Раньше у меня уже были попытки делать такие ветрогенераторы. Но в этот раз я хотел сделать более качественный и долговечный ветрогенератор, чтобы он долго служил и выдавал постоянно около 30-50ватт/ч электроэнергии для зарядки аккумулятора.

>

Красивый ветрячек получился

Еще немного фотографий изготовления дискового ветрогенератора своими руками. Хоть сам ветрогенератор и не получился из-за банальных ошибок, но зато подход к делу и основательность радует, хорош внешний вид ветрогенератора. Деревянные лопасти, складывающийся хвост, крепкая мачта на растяжках, все это прокрашено.

>

Как сделать аксиальный ветрогенератор

В статье на конкретном примере описывается процесс создания аксиального ветрогенератора на автомобильной ступице. Для генератора было сделано несколько статоров, особенностью последнего статора является применение сердечников в катушках статора для увеличения мощности.


>

Аксиальный генератор на ферритовых магнитах

В генераторе использовались обычные ферритовые магниты, из-за невысокой мощности магнитов катушки генератора содержат по 325 витков проводом 0,5мм. Генератор трехфазный 20 полюсов и 15 катушек. Мощность небольшая, всего около 30 ватт на больших оборотах.


>

Ветрогенератор 20-ти полюсной на магнитах 20*5мм

Фото отчет с кратким описанием процесса создания самодельного ветрогенератора. В основе лежит ступица от прицепа "Зубренок" , поворотная ось так-же сделана из автомобильной ступицы. Генератор трехфазный, 20 полюсов и 15 катушек намотанных проводом 0,7мм по 70 витков. Винт двухлопастной, сделан из ПВХ трубы.


>

Маленький ветряк на 30ватт

Небольшой двух-лопастной ветрогенератор был построен как тестовая уменьшенная модель, чтобы выдавала на аккумулятор до 1А. В итоге генератор получился удачным, и в будущем планируется построить большой аксиальный ветрогенератор.


>

Мини ветрогенератор 20ватт/ч

Этот небольшой ветрогенератор делался ради опыта, чтобы возможно в дальнейшем сделать большой и мощный ветрогенератор. Мощность генератора сейчас порядка 50ватт/ч, но это после некоторых улучшений, в частности изготовления нового статора, потом были еще эксперименты и модернизация.


>

Дешевый мини ветрогенератор для зарядки АКБ

Простейшие мини ветрогенераторы аксиального типа, делать много маленьких проще чем один большой. Каждый такой ветрячек заражает свой аккумулятор напрямую, а слабый ток позволяет не следить за процессом зарядки без контроллера, так-как не вредит АКБ.


>

Небольшой много-полюсной генератор 50 ватт

В генераторе использовались магниты от первого ветряка, так-как магниты небольших размеров, было решено поднять мощность за счет увеличения числа полюсов генератора. Для проверки своих расчетов и проверки информации из интернета было изготовлено несколько статоров с разным числом катушек и фаз.


>

Аксиальный ветрогенератор на ступице от ВАЗ2108

Классическая конструкция аксиального генератора на автомобильной ступице. Генератор трехфазный, статор имеет 12 катушек, а на дисках ротора по 16 магнитов 25*8мм. Номинальная мощность этого генератора 100ватт/ч, на слабых ветрах на аккумулятор 2-4А. при усилении ветра ток доходит до 12А, максимальная мощность была зафиксирована в районе 240ватт/ч.


>

Ветрогенераторы с необычным внешним видом

Аксиальные ветрогенераторы из автомобильных ступиц мы делаем уже давно. В этот раз мы решили придать индивидуальность и красоту нашим ветрякам, чтобы они не только заряжали наши аккумуляторы, но и радовали глаз внешним видом. В конструкции ветрогенераторов ничего особенного кроме внешнего вида нет, классический трехфазный аксиальный генератор.


>

Мощный ветрогенератор на основе самодельного аксиального генератора

Конструкция этого ветрогенератора специально проектировалась для работы в местности с преобладанием малых ветров. В основе ветрогенератора мы собрали мощный низко-оборотный генератор аксиального типа с бес-железным статором. Генератор собран на основе ступицы от автоприцепа, пяти-метровый винт был рассчитан и изготовлен из дерева. Подробности с множеством фотографий создания в этой статье.

>

Однофазный ветрогенератор аксиальный

Самодельный ветрогенератор с дисковым генератором на неодимовых магнитах. Классическая схема аксиального генератора на постоянных магнитах.

Однофазная схема, 12 катушек и по 12 магнитов на каждом диске, в итоге малыш развивает до 100ватт, а иногда и больше.

>

Фото отчет о строительстве сразу 3-х ветрогенераторов

В этот раз мы вместе с соседями строим сразу три аксиальных ветрогенератора на основе автомобильных ступиц. Генераторы абсолютно идентичны, мощность каждого 500ватт/ч. Эти генераторы мы делаем уже давно, такая компоновка ветрогенератора доступна для повторения каждому, так-как не требует специальных условий и инструментов для изготовления ветряка. Летом мы уже построили подобный ветряк, а сейчас усиливаем батарею ветряков.

>

Профессионально сделанный ветряк 2кВт

Самедельная домашняя ветровая турбина мощностью 2кВт от Итальянского мастера. Точнее сказать проффесионально сделанный дисковый аксиальный ветрогенератор приличной мошности. В статье много фото процесса изготовления ветряка с небольшим описанием.

В наш век компьютерной техники и высоких технологий, многие стали задумываться об альтернативных источниках энергии — ведь богатства земных недр не безграничны. Идея использования энергии движения воздушных масс в качестве такого источника далеко не нова, но только в наше время начинает приобретать более очевидные (с точки зрения практического использования) очертания. Теперь, благодаря применению новых технологий и конструкционных материалов, стало возможным даже приобретение (или изготовление) таких установок для использования частными лицами — на ветроагрегат, установленный для дома на территории соседнего дачного участка уже не приходят глазеть толпы зевак — такое зрелище начинает становится почти обыденным.

Кардинально поменялись некоторые узлы и агрегаты ветроустановок. Если раньше генератор ветряка представлял из себя стандартную конструкцию со щеточными или кольцевыми токосъемниками, которые довольно изрядно шумели при работе (так что установка такого агрегата в жилом секторе считалась невозможной), то сейчас, с появлением сверхмощных неодимовых магнитов,

которые теряют за 10 лет лишь около 1 процента своей мощности, стало возможным изготовление одно- или трехфазных генераторов работающих почти бесшумно и при минимальных ветровых нагрузках (0,5-2,5 м/c). Появились и серьезные новации в области конструктива ветроколеса. Если раньше повсемесно применялась конструкция ветрогенератора с параллельным (по отношению к Земле) расположением оси вращения,

то сейчас все большую популярность приобретают конструкции с применением аксиального вертикального ветряка.

Применение такой конструкции обусловлено несколькими факторами: лопасти ветроколеса с горизонтальной осью вращения, направленные в сторону воздушного потока и рассекая его, создают высокий уровень шума (порядка 70, а в некоторых случаях и более децибел); для »запуска» генератора, оснащенного таким ветроколесом, требуется достаточно сильный воздушный поток — порядка 8-10 м/с (попробуйте отыскать район на планете, где ветер постоянно дул бы с такой скоростью!), как следствие — применение высоченных мачт для расположения таких конструкций; для установки ветроколеса »по ветру» требуется применение специальных »рулевых» механизмов; кроме этого необходима система торможения на случай сильного ветра. Всех этих недостатков лишена конструкция аксиального ветрогенератора с вертикальной осью вращения (см.фото). Конструкцию не нужно поднимать высоко над землей — достаточно 1-4 метров (для генератора мощностью 1,5 кВт); высота лопасти ветроколеса равна примерно 1 метру (против 3-х для генератора такой же мощности, но с горизонтальным расположением оси винта); для вращения такого агрегата, при котором он способен отдавать в нагрузку достаточную мощность, хватает легкого ветерка (1,5 м/c). Все эти факторы являются надежной предпосылкой к покупке или самостоятельному изготовлению для дома таких ветроагрегатов.

Полученную энергию легко применять для бытовых целей напрямую (с помощью инвертора) и запасать (аккумуляторы). Мощность (количество) ветроагрегатов и аккумуляторов можно высчитать по простым формулам: Wобщая = Wнагрузки * (1,3 или 1,5) — эта величина зависит от »ветроресурсов» вашего района.Количество требуемых батарей тоже можно примерно расчитать, помножив необходимую вам мощность (W) потребления в сутки на количество безветренных дней. Кроме этого, в практике самодельщиков появились схемы отопления жилища с применением ветрогенераторов, где нагрузкой являются низковольтные нагреватели (ТЭНы) погруженные в энергоемкий теплоноситель. Целесообразным считается и применение гибридных схем альтернативного энергоснабжения, с совмесным применением ветрогенераторов и солнечных батарей — смотрите нашу статью-анонс »Солнечные батареи ». В заключении хочется привести небольшое но очень важное замечание: при самостоятельном изготовлении ветрогенераторов, соблюдайте правила безопасности при работе с мощными неодимовыми магнитами — испорченный телевизор, деформированная дверца холодильника или вашей любимой машины еще не самое страшное. Гораздо страшнее раздробленные кости пальцев, зажатые между двумя магнитами или пробитые острыми металлическими инструментами руки — не очень приятно, когда лежащий на верстаке нож вдруг взлетает и с расстояния в пол-метра втыкается вам в руку, в которой находится магнит. Не нагревайте и не применяйте сильных ударных нагрузок к магнитам — нагревание (в результате обработки) приводит к потери магнитных свойств, а сильное нагревание приводит к воспламенению с выделением ядовитых веществ. Что, напугали мы вас? Не печальтесь — соблюдение всех вышеизложенных правил позволит вам избежать травм и порчи имущества, а изготовленный для дома агрегат будет радовать своей безотказной работой! Автор статьи: Электродыч.

Аксиальный ветрогенератор, который работает на неодимовых магнитах, впервые начали массово изготавливать в странах Запада. И это были вовсе не заводские изделия, а плод труда местных гаражных мастеров, поставивших себе на службу явление левитации. Серьезной популярности именно такие модели ветряка обязаны массовому распространению и дешевизне неодимовых магнитов. Постепенно комплектующие и схемы изготовления стали распространятся по всему миру и в настоящее время магнитный аксиальный ветрогенератор завоевывает признание на просторах Российской Федерации. Ниже описана последовательность создания одной из самых удачных моделей такого ветряка.

Процесс создания ротора

Основой генератора автор разработки решил сделать ступицу автомобиля с дисками тормоза, поскольку она мощная, надежная и идеально сбалансированная. Начав делать ветряк своими руками, в первую очередь следует подготовить основу для ротора — ступицу, — почистить ее от грязи, краски и смазки. После чего приступить к наклейке постоянных магнитов. Для создания данного ветрогенератора, их было использовано по двадцать штук на диске. Размер неодимовых магнитов составил 25х8 миллиметров. Однако, и их количество, и их размер могут варьировать в зависимости от целей и задач человека, своими собственными руками создающего ветрогенератор. Однако всегда будет правильным, для получения одной фазы, равенство количества полюсов числу неодимовых магнитов, а для трех фаз — выдержка соотношений полюсов и катушек — два к трем или три к четырем.

Магниты следует располагать учитывая чередование полюсов, к тому же максимально точно, но прежде, чем приступить к их наклейке, нужно либо создать бумажный шаблон, либо прочертить линии, делящие диск на сектора. Чтобы не перепутать полюса, делаем отметки на магнитах. Главное — выполняем следующее требование — те магниты, которые стоят напротив друг друга, должны быть повернуты разными полюсами, то есть притягиваться.

Магниты приклеиваются к дискам при помощи супер-клея и заливаются. Также нужно сделать бордюрчики по краям дисков и в их центре, либо намотав скотча, либо вылепив из пластилина для недопущения растекания.

Фазы — что лучше — три или одна?

Многие любители электрической техники идут по пути наименьшего сопротивления и, чтобы не заморачиваться, останавливают свой выбор на однофазном статоре для ветряка. Однако у него имеется одна неприятная особенность, нивелирующая простоту сборки, — это вибрация в нагруженном состоянии, по причине непостоянства отдачи тока. Ведь амплитуда такого статора скачкообразна, — достигая максимума, когда неодимовые магниты располагаются над катушками, а после падая до минимума.

А вот, когда генератор сделан по трехфазной системе, то вибрации отсутствуют, и показатель мощности ветряка имеет постоянное значение. Причина такого отличия заключается в том, что ток, падая в одной фазе, в то же время нарастает в другой. И в итоге, ветрогенератор, работающий в трехфазной системе, может быть более эффективным до 50 %, чем точно такой же, но использующий однофазную систему. И главное, — нагруженный трехфазный генератор не дает вибрации, следовательно, мачта не дает повода для жалоб на ветрогенератор в надзирающие органы недоброжелателям из числа соседей, поскольку не создает надоедливого гула.

Способ намотки катушки статора ветряка

Для того, чтобы сделанный своими руками ветрогенератор на неодимовых магнитах работал с максимальной отдачей, статорные катушки следует рассчитывать. Однако большинство мастеров предпочитают делать их на глаз. К примеру, тихоходный генератор, способный заряжать 12 В аккумулятор, начиная со 100 — 150 оборотов за минуту, должен иметь во всех катушках от 1000 до 1200 витков, поровну разделенное между всеми катушками. Увеличение количества полюсов ведет к росту частоты тока в катушках, благодаря чему генератор, даже при малых оборотах, дает большую мощность.

Намотка катушек должна производиться по возможности более толстыми проводами, с целью снижения сопротивления в них. Делать это можно на оправке, либо на самодельном станке.

Для того чтобы разобраться, какой потенциал мощности имеет генератор, покрутите его с одной катушкой, поскольку, в зависимости от того, в каком количестве будут установлены неодимовые магниты и какова их толщина, данный показатель может существенно отличаться. Измерение проводятся без нагрузки при необходимом числе оборотов. Например, если генератор при 200 оборотах за минуту обеспечивает напряжение в 30 В, имея сопротивление в 3 Ом, то следует из 30 В вычесть 12 В (напряжение питания аккумулятора) и полученный результат — 18 делим на 3 (сопротивление в омах) получаем 6 (сила тока в амперах), которые и пойдут от ветрогенератора на зарядку АКБ. Однако, как показывает практика, по причине потерь в проводах и диодном мосту, реальный показатель, который будет производить магнитный аксиальный генератор, будет поменьше.

Магниты для создания ветрогенератора лучше брать в форме прямоугольника, поскольку их поле распространяется по длине, в отличие от круглых, поле которых сосредотачивается в центре. Катушки, как правило, мотают круглыми, хотя лучше делать их несколько вытянутыми, что обеспечивает больший объем меди в секторе, а также более прямые витки. Отверстие внутри катушек должно быть равно или превышать ширину магнитов.

Толщина статора должна быть такой же что и магниты. Форма для него обычно фанерная, для прочности под катушки и поверх них кладут стеклоткань, и все это заливается эпоксидной смолой. Для того, что бы не допустить прилипания смолы к форме, последнюю смазывают любым жиром либо применяют скотч. Провода предварительно выводят наружу и скрепляют между собой, концы каждой фазы после этого соединяют треугольником либо звездочкой.


Мачта для ветрогенератора

Мачту на которой будет расположен данный генератор, можно делать высотой от 6 и выше метров, чем выше, тем больше скорость ветра. Под нее следует вырыть яму и залить основание из бетона, а трубу укрепить таким образом, чтобы магнитный аксиальный ветрогенератор, сделанный своими руками, можно было опускать и поднимать. Делать это можно при помощи механической тали.

Винт ветряка

Его делают из поливинилхлоридных труб, чей оптимальный для этого диаметр — 160 мм. К примеру, ветрогенератор, работающий на принципе магнитной левитации, с диаметром в два метра и шестью лопастями, при скорости ветра в 8 метров за секунду, способен обеспечить мощность до 300 Вт.

Как повысить мощность ветряка?

Для подъема можно использовать магниты. Попросту на магниты, которые уже установлены наклеить еще по одному такому же или более тонкому. Другой способ основан на установке в катушки металлических сердечников, — пластин трансформатора. Это обеспечит усиление магнитопотока в катушке, однако вызывает небольшое залипание, которое, впрочем, совершенно не ощущается шестилопастным винтом. Стартует такой ветрогенератор при ветре в 2 м/с. Благодаря применению сердечников генератор получил увеличение мощности с 300 до 500 Вт/ч при ветре в 8 м/с. Также следует уделять внимание форме лопастей, — малейшие неточности снижают мощность.